Learn more about

Refine search


Results (1-50 of 667 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{5}, \sqrt{21})\) $[1, 1, 1]$ $1$
1.1-b \(\Q(\sqrt{5}, \sqrt{21})\) $[1, 1, 1]$ $1$
1.1-c \(\Q(\sqrt{5}, \sqrt{21})\) $[1, 1, 1]$ $1$
1.1-d \(\Q(\sqrt{5}, \sqrt{21})\) $[1, 1, 1]$ $2$
4.1-a \(\Q(\sqrt{5}, \sqrt{21})\) $[4, 2, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{11}{4}w + 5]$ $2$
4.2-a \(\Q(\sqrt{5}, \sqrt{21})\) $[4,2,-\frac{1}{8}w^{3} + \frac{1}{2}w^{2} + \frac{5}{8}w - \frac{3}{2}]$ $2$
9.1-a \(\Q(\sqrt{5}, \sqrt{21})\) $[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ $2$
9.1-b \(\Q(\sqrt{5}, \sqrt{21})\) $[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ $2$
9.1-c \(\Q(\sqrt{5}, \sqrt{21})\) $[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ $2$
9.1-d \(\Q(\sqrt{5}, \sqrt{21})\) $[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ $4$
16.1-a \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 2, 2]$ $1$
16.1-b \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 2, 2]$ $1$
16.1-c \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 2, 2]$ $2$
16.1-d \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 2, 2]$ $2$
16.1-e \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 2, 2]$ $2$
16.1-f \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 2, 2]$ $2$
16.1-g \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 2, 2]$ $4$
16.2-a \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 4, -w]$ $1$
16.2-b \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 4, -w]$ $2$
16.2-c \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 4, -w]$ $2$
16.2-d \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 4, -w]$ $4$
16.2-e \(\Q(\sqrt{5}, \sqrt{21})\) $[16, 4, -w]$ $4$
16.3-a \(\Q(\sqrt{5}, \sqrt{21})\) $[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ $1$
16.3-b \(\Q(\sqrt{5}, \sqrt{21})\) $[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ $2$
16.3-c \(\Q(\sqrt{5}, \sqrt{21})\) $[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ $2$
16.3-d \(\Q(\sqrt{5}, \sqrt{21})\) $[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ $4$
16.3-e \(\Q(\sqrt{5}, \sqrt{21})\) $[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ $4$
20.1-a \(\Q(\sqrt{5}, \sqrt{21})\) $[20, 10, -w - 2]$ $1$
20.1-b \(\Q(\sqrt{5}, \sqrt{21})\) $[20, 10, -w - 2]$ $1$
20.1-c \(\Q(\sqrt{5}, \sqrt{21})\) $[20, 10, -w - 2]$ $1$
20.1-d \(\Q(\sqrt{5}, \sqrt{21})\) $[20, 10, -w - 2]$ $1$
20.1-e \(\Q(\sqrt{5}, \sqrt{21})\) $[20, 10, -w - 2]$ $2$
20.1-f \(\Q(\sqrt{5}, \sqrt{21})\) $[20, 10, -w - 2]$ $2$
20.1-g \(\Q(\sqrt{5}, \sqrt{21})\) $[20, 10, -w - 2]$ $3$
20.1-h \(\Q(\sqrt{5}, \sqrt{21})\) $[20, 10, -w - 2]$ $3$
20.2-a \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ $1$
20.2-b \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ $1$
20.2-c \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ $1$
20.2-d \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ $1$
20.2-e \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ $2$
20.2-f \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ $2$
20.2-g \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ $3$
20.2-h \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ $3$
20.3-a \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ $1$
20.3-b \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ $1$
20.3-c \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ $1$
20.3-d \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ $1$
20.3-e \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ $2$
20.3-f \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ $2$
20.3-g \(\Q(\sqrt{5}, \sqrt{21})\) $[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ $3$
Next