Learn more about

Further refine search

Refine search


Results (1-50 of 396 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{2}, \sqrt{13})\) $[1, 1, 1]$ $1$
1.1-b \(\Q(\sqrt{2}, \sqrt{13})\) $[1, 1, 1]$ $1$
1.1-c \(\Q(\sqrt{2}, \sqrt{13})\) $[1, 1, 1]$ $2$
4.1-a \(\Q(\sqrt{2}, \sqrt{13})\) $[4, 2, -\frac{2}{5}w^{3} + \frac{3}{5}w^{2} + \frac{17}{5}w - \frac{9}{5}]$ $1$
4.1-b \(\Q(\sqrt{2}, \sqrt{13})\) $[4, 2, -\frac{2}{5}w^{3} + \frac{3}{5}w^{2} + \frac{17}{5}w - \frac{9}{5}]$ $2$
9.1-a \(\Q(\sqrt{2}, \sqrt{13})\) $[9, 3, -\frac{2}{5}w^{3} + \frac{3}{5}w^{2} + \frac{22}{5}w - \frac{9}{5}]$ $2$
9.1-b \(\Q(\sqrt{2}, \sqrt{13})\) $[9, 3, -\frac{2}{5}w^{3} + \frac{3}{5}w^{2} + \frac{22}{5}w - \frac{9}{5}]$ $6$
9.2-a \(\Q(\sqrt{2}, \sqrt{13})\) $[9,3,\frac{2}{5}w^{3} - \frac{3}{5}w^{2} - \frac{22}{5}w + \frac{14}{5}]$ $2$
9.2-b \(\Q(\sqrt{2}, \sqrt{13})\) $[9,3,\frac{2}{5}w^{3} - \frac{3}{5}w^{2} - \frac{22}{5}w + \frac{14}{5}]$ $6$
16.1-a \(\Q(\sqrt{2}, \sqrt{13})\) $[16, 2, 2]$ $2$
16.1-b \(\Q(\sqrt{2}, \sqrt{13})\) $[16, 2, 2]$ $2$
16.1-c \(\Q(\sqrt{2}, \sqrt{13})\) $[16, 2, 2]$ $4$
16.1-d \(\Q(\sqrt{2}, \sqrt{13})\) $[16, 2, 2]$ $4$
17.1-a \(\Q(\sqrt{2}, \sqrt{13})\) $[17, 17, w + 1]$ $1$
17.1-b \(\Q(\sqrt{2}, \sqrt{13})\) $[17, 17, w + 1]$ $1$
17.1-c \(\Q(\sqrt{2}, \sqrt{13})\) $[17, 17, w + 1]$ $1$
17.1-d \(\Q(\sqrt{2}, \sqrt{13})\) $[17, 17, w + 1]$ $6$
17.1-e \(\Q(\sqrt{2}, \sqrt{13})\) $[17, 17, w + 1]$ $6$
17.2-a \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ $1$
17.2-b \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ $1$
17.2-c \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ $1$
17.2-d \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ $6$
17.2-e \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ $6$
17.3-a \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ $1$
17.3-b \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ $1$
17.3-c \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ $1$
17.3-d \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ $6$
17.3-e \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ $6$
17.4-a \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-w + 2]$ $1$
17.4-b \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-w + 2]$ $1$
17.4-c \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-w + 2]$ $1$
17.4-d \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-w + 2]$ $6$
17.4-e \(\Q(\sqrt{2}, \sqrt{13})\) $[17,17,-w + 2]$ $6$
23.1-a \(\Q(\sqrt{2}, \sqrt{13})\) $[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ $1$
23.1-b \(\Q(\sqrt{2}, \sqrt{13})\) $[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ $1$
23.1-c \(\Q(\sqrt{2}, \sqrt{13})\) $[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ $1$
23.1-d \(\Q(\sqrt{2}, \sqrt{13})\) $[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ $2$
23.1-e \(\Q(\sqrt{2}, \sqrt{13})\) $[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ $2$
23.1-f \(\Q(\sqrt{2}, \sqrt{13})\) $[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ $9$
23.2-a \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ $1$
23.2-b \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ $1$
23.2-c \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ $1$
23.2-d \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ $2$
23.2-e \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ $2$
23.2-f \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ $9$
23.3-a \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ $1$
23.3-b \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ $1$
23.3-c \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ $1$
23.3-d \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ $2$
23.3-e \(\Q(\sqrt{2}, \sqrt{13})\) $[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ $2$
Next