Properties

Base field 6.6.300125.1
Weight [2, 2, 2, 2, 2, 2]
Level norm 41
Level $[41,41,-4w^{5} + 30w^{3} + 19w^{2} - 19w - 8]$
Label 6.6.300125.1-41.5-a
Dimension 3
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 6.6.300125.1

Generator \(w\), with minimal polynomial \(x^{6} - x^{5} - 7x^{4} + 2x^{3} + 7x^{2} - 2x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2, 2, 2]
Level $[41,41,-4w^{5} + 30w^{3} + 19w^{2} - 19w - 8]$
Label 6.6.300125.1-41.5-a
Dimension 3
Is CM no
Is base change no
Parent newspace dimension 3

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{3} \) \(\mathstrut -\mathstrut 10x^{2} \) \(\mathstrut +\mathstrut 12x \) \(\mathstrut +\mathstrut 24\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
29 $[29, 29, -9w^{5} + 3w^{4} + 64w^{3} + 26w^{2} - 40w - 10]$ $\phantom{-}e$
29 $[29, 29, w^{5} - 7w^{3} - 5w^{2} + 2w + 2]$ $-\frac{1}{2}e^{2} + 2e + 8$
29 $[29, 29, w^{4} - w^{3} - 6w^{2} + 2]$ $\phantom{-}\frac{3}{4}e^{2} - \frac{11}{2}e$
29 $[29, 29, 5w^{5} - w^{4} - 36w^{3} - 19w^{2} + 21w + 9]$ $\phantom{-}e$
29 $[29, 29, -w^{5} + w^{4} + 7w^{3} - 2w^{2} - 6w + 1]$ $\phantom{-}\frac{1}{2}e^{2} - 5e + 4$
29 $[29, 29, 2w^{5} - 15w^{3} - 10w^{2} + 11w + 5]$ $-\frac{1}{4}e^{2} + \frac{3}{2}e + 4$
41 $[41, 41, 5w^{5} - w^{4} - 36w^{3} - 18w^{2} + 21w + 5]$ $\phantom{-}\frac{1}{2}e^{2} - 2e - 10$
41 $[41, 41, -5w^{5} + 2w^{4} + 36w^{3} + 11w^{2} - 25w - 2]$ $\phantom{-}\frac{1}{4}e^{2} - 3e + 7$
41 $[41, 41, 6w^{5} - w^{4} - 44w^{3} - 23w^{2} + 30w + 8]$ $\phantom{-}\frac{1}{4}e^{2} - 3e + 7$
41 $[41, 41, 13w^{5} - 4w^{4} - 93w^{3} - 39w^{2} + 59w + 16]$ $\phantom{-}\frac{1}{4}e^{2} - \frac{3}{2}e - 6$
41 $[41, 41, -4w^{5} + 30w^{3} + 19w^{2} - 19w - 8]$ $-1$
41 $[41, 41, w^{5} - 7w^{3} - 6w^{2} + 2w + 3]$ $-\frac{1}{2}e^{2} + 5e - 6$
49 $[49, 7, -5w^{5} + w^{4} + 36w^{3} + 19w^{2} - 22w - 6]$ $-e + 6$
64 $[64, 2, -2]$ $-\frac{1}{4}e^{2} + 4e - 4$
71 $[71, 71, -8w^{5} + w^{4} + 58w^{3} + 34w^{2} - 34w - 16]$ $\phantom{-}\frac{3}{4}e^{2} - \frac{13}{2}e - 2$
71 $[71, 71, -6w^{5} + 2w^{4} + 42w^{3} + 18w^{2} - 23w - 6]$ $-\frac{3}{4}e^{2} + \frac{13}{2}e - 2$
71 $[71, 71, -8w^{5} + 2w^{4} + 58w^{3} + 27w^{2} - 38w - 10]$ $-\frac{1}{4}e^{2} + \frac{1}{2}e + 2$
71 $[71, 71, 4w^{5} - 30w^{3} - 19w^{2} + 20w + 8]$ $\phantom{-}\frac{1}{4}e^{2} - 2e + 7$
71 $[71, 71, -10w^{5} + 3w^{4} + 72w^{3} + 30w^{2} - 48w - 10]$ $-\frac{3}{4}e^{2} + \frac{13}{2}e - 2$
71 $[71, 71, -8w^{5} + 2w^{4} + 58w^{3} + 26w^{2} - 37w - 8]$ $-e^{2} + 7e + 2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
41 $[41,41,-4w^{5} + 30w^{3} + 19w^{2} - 19w - 8]$ $1$