Properties

Base field 6.6.1397493.1
Weight [2, 2, 2, 2, 2, 2]
Level norm 17
Level $[17, 17, -w^{2} + 2w + 1]$
Label 6.6.1397493.1-17.1-c
Dimension 3
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 6.6.1397493.1

Generator \(w\), with minimal polynomial \(x^{6} - 3x^{5} - 3x^{4} + 10x^{3} + 3x^{2} - 6x + 1\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2, 2, 2]
Level $[17, 17, -w^{2} + 2w + 1]$
Label 6.6.1397493.1-17.1-c
Dimension 3
Is CM no
Is base change no
Parent newspace dimension 10

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{3} \) \(\mathstrut +\mathstrut 3x^{2} \) \(\mathstrut -\mathstrut 3\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w - 1]$ $\phantom{-}e$
17 $[17, 17, -w^{2} + 2w + 1]$ $-1$
17 $[17, 17, -w^{3} + w^{2} + 4w]$ $-3e^{2} - 3e + 9$
19 $[19, 19, w^{5} - 3w^{4} - 2w^{3} + 8w^{2} + w - 4]$ $-2e^{2} - 3e + 5$
19 $[19, 19, w^{2} - w - 1]$ $\phantom{-}e^{2} - 4$
37 $[37, 37, w^{4} - 2w^{3} - 3w^{2} + 3w + 2]$ $\phantom{-}4e^{2} + 3e - 10$
37 $[37, 37, w^{4} - 4w^{3} + w^{2} + 7w - 3]$ $-5e^{2} - 6e + 8$
53 $[53, 53, 2w^{5} - 6w^{4} - 6w^{3} + 18w^{2} + 9w - 6]$ $-3e^{2} - 6e + 9$
53 $[53, 53, -w^{5} + 3w^{4} + 3w^{3} - 9w^{2} - 3w + 2]$ $-6e - 9$
64 $[64, 2, -2]$ $-5e^{2} - 9e + 8$
71 $[71, 71, -w^{5} + 4w^{4} - w^{3} - 8w^{2} + 3w - 1]$ $\phantom{-}3e^{2} + 3e$
71 $[71, 71, 2w^{5} - 5w^{4} - 8w^{3} + 15w^{2} + 12w - 6]$ $\phantom{-}3e$
71 $[71, 71, 2w^{5} - 6w^{4} - 6w^{3} + 18w^{2} + 9w - 7]$ $-3e^{2} - 6e + 9$
73 $[73, 73, -2w^{5} + 6w^{4} + 5w^{3} - 16w^{2} - 7w + 3]$ $\phantom{-}e^{2} + 2$
73 $[73, 73, -2w^{5} + 6w^{4} + 5w^{3} - 17w^{2} - 6w + 6]$ $-2e^{2} + 3e + 11$
89 $[89, 89, w^{5} - 2w^{4} - 5w^{3} + 6w^{2} + 8w - 4]$ $-6e^{2} - 9e + 9$
89 $[89, 89, w^{5} - w^{4} - 9w^{3} + 7w^{2} + 16w - 6]$ $-3e^{2} - 3e + 9$
89 $[89, 89, 2w^{5} - 6w^{4} - 4w^{3} + 15w^{2} + 3w - 3]$ $-3e^{2} - 6e$
89 $[89, 89, w^{5} - 2w^{4} - 6w^{3} + 8w^{2} + 10w - 6]$ $\phantom{-}6e^{2} + 9e$
107 $[107, 107, w^{5} - 2w^{4} - 7w^{3} + 10w^{2} + 12w - 6]$ $-6e^{2} - 6e + 18$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
17 $[17, 17, -w^{2} + 2w + 1]$ $1$