Properties

Label 6.6.1259712.1-1.1-a
Base field \(\Q(\zeta_{36})^+\)
Weight $[2, 2, 2, 2, 2, 2]$
Level norm $1$
Level $[1, 1, 1]$
Dimension $4$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\zeta_{36})^+\)

Generator \(w\), with minimal polynomial \(x^{6} - 6x^{4} + 9x^{2} - 3\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2, 2]$
Level: $[1, 1, 1]$
Dimension: $4$
CM: no
Base change: yes
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{4} - 9x^{2} + 12\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}e$
8 $[8, 2, w^{3} - 3w - 1]$ $\phantom{-}e^{3} - 6e$
37 $[37, 37, w^{4} - 5w^{2} - w + 5]$ $-2e^{2} + 8$
37 $[37, 37, w^{5} - 5w^{3} - w^{2} + 4w + 1]$ $-2e^{2} + 8$
37 $[37, 37, -w^{5} + w^{4} + 5w^{3} - 4w^{2} - 5w + 1]$ $-2e^{2} + 8$
37 $[37, 37, w^{5} + w^{4} - 5w^{3} - 4w^{2} + 5w + 1]$ $-2e^{2} + 8$
37 $[37, 37, w^{5} - 5w^{3} + w^{2} + 4w - 1]$ $-2e^{2} + 8$
37 $[37, 37, -w^{4} + 5w^{2} - w - 5]$ $-2e^{2} + 8$
71 $[71, 71, w^{5} - 5w^{3} - w^{2} + 5w + 4]$ $-e^{3} + 3e$
71 $[71, 71, w^{5} - 4w^{3} - w^{2} + w + 2]$ $-e^{3} + 3e$
71 $[71, 71, w^{5} + w^{4} - 5w^{3} - 5w^{2} + 4w + 2]$ $-e^{3} + 3e$
71 $[71, 71, w^{5} - w^{4} - 5w^{3} + 5w^{2} + 4w - 2]$ $-e^{3} + 3e$
71 $[71, 71, -w^{5} + 4w^{3} - w^{2} - w + 2]$ $-e^{3} + 3e$
71 $[71, 71, -w^{5} + 5w^{3} - w^{2} - 5w + 4]$ $-e^{3} + 3e$
73 $[73, 73, w^{5} - 5w^{3} - w^{2} + 3w + 2]$ $\phantom{-}e^{2} - 4$
73 $[73, 73, 2w^{5} - w^{4} - 10w^{3} + 4w^{2} + 9w - 2]$ $\phantom{-}e^{2} - 4$
73 $[73, 73, -w^{5} + 4w^{3} - w^{2} - 2w + 2]$ $\phantom{-}e^{2} - 4$
73 $[73, 73, w^{5} - 4w^{3} - w^{2} + 2w + 2]$ $\phantom{-}e^{2} - 4$
73 $[73, 73, -2w^{5} - w^{4} + 10w^{3} + 4w^{2} - 9w - 2]$ $\phantom{-}e^{2} - 4$
73 $[73, 73, w^{5} - 5w^{3} + w^{2} + 3w - 2]$ $\phantom{-}e^{2} - 4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is \((1)\).