# Properties

 Base field 6.6.1241125.1 Weight [2, 2, 2, 2, 2, 2] Level norm 29 Level $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$ Label 6.6.1241125.1-29.1-c Dimension 5 CM no Base change no

# Related objects

• L-function not available

## Base field 6.6.1241125.1

Generator $$w$$, with minimal polynomial $$x^{6} - 7x^{4} - 2x^{3} + 11x^{2} + 7x + 1$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2, 2, 2] Level $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$ Label 6.6.1241125.1-29.1-c Dimension 5 Is CM no Is base change no Parent newspace dimension 20

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{5}$$ $$\mathstrut +\mathstrut 2x^{4}$$ $$\mathstrut -\mathstrut 9x^{3}$$ $$\mathstrut -\mathstrut 18x^{2}$$ $$\mathstrut +\mathstrut 13x$$ $$\mathstrut +\mathstrut 27$$
Norm Prime Eigenvalue
5 $[5, 5, -2w^{5} + w^{4} + 13w^{3} - 2w^{2} - 19w - 5]$ $\phantom{-}e$
9 $[9, 3, 2w^{5} - w^{4} - 14w^{3} + 2w^{2} + 23w + 6]$ $-e^{4} - e^{3} + 9e^{2} + 6e - 13$
11 $[11, 11, w - 1]$ $-e^{4} + 10e^{2} - e - 18$
25 $[25, 5, w^{3} + w^{2} - 4w - 3]$ $\phantom{-}e^{2} + e - 8$
29 $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$ $\phantom{-}1$
41 $[41, 41, w^{4} - w^{3} - 5w^{2} + 3w + 3]$ $\phantom{-}e^{4} + e^{3} - 10e^{2} - 6e + 15$
49 $[49, 7, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w + 1]$ $\phantom{-}3e^{4} - 29e^{2} - 2e + 49$
59 $[59, 59, 2w^{5} - w^{4} - 14w^{3} + 2w^{2} + 24w + 7]$ $\phantom{-}5e^{4} + 3e^{3} - 45e^{2} - 18e + 69$
59 $[59, 59, -w^{5} + 8w^{3} + 2w^{2} - 15w - 8]$ $\phantom{-}e^{4} + e^{3} - 8e^{2} - 7e + 6$
61 $[61, 61, w^{5} - 7w^{3} - 2w^{2} + 12w + 4]$ $-2e^{4} + 19e^{2} - e - 41$
61 $[61, 61, -w^{5} + 7w^{3} - 11w - 1]$ $-2e^{4} - e^{3} + 21e^{2} + 3e - 47$
64 $[64, 2, 2]$ $-3e^{2} - e + 11$
71 $[71, 71, w^{3} + w^{2} - 5w - 3]$ $-2e^{4} + 18e^{2} + e - 30$
71 $[71, 71, -3w^{5} + w^{4} + 21w^{3} - w^{2} - 33w - 9]$ $\phantom{-}3e^{4} - 28e^{2} - 2e + 42$
79 $[79, 79, -2w^{5} + w^{4} + 13w^{3} - 3w^{2} - 19w - 5]$ $-5e^{4} - e^{3} + 47e^{2} + 9e - 83$
81 $[81, 3, 2w^{5} - w^{4} - 13w^{3} + w^{2} + 19w + 8]$ $\phantom{-}e^{3} - 2e^{2} - 6e + 2$
89 $[89, 89, 2w^{5} - w^{4} - 13w^{3} + 2w^{2} + 20w + 7]$ $\phantom{-}3e^{4} + 2e^{3} - 26e^{2} - 13e + 39$
89 $[89, 89, -w^{5} + 8w^{3} + w^{2} - 16w - 5]$ $-e^{3} - e^{2} + 5e - 3$
89 $[89, 89, -3w^{5} + w^{4} + 20w^{3} - 30w - 11]$ $\phantom{-}3e^{4} + e^{3} - 32e^{2} - 7e + 63$
89 $[89, 89, -w^{5} + 7w^{3} + 2w^{2} - 11w - 4]$ $\phantom{-}2e^{4} + 2e^{3} - 19e^{2} - 13e + 30$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
29 $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$ $-1$