Properties

Base field 6.6.1241125.1
Weight [2, 2, 2, 2, 2, 2]
Level norm 29
Level $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$
Label 6.6.1241125.1-29.1-b
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 6.6.1241125.1

Generator \(w\), with minimal polynomial \(x^{6} - 7x^{4} - 2x^{3} + 11x^{2} + 7x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2, 2, 2]
Level $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$
Label 6.6.1241125.1-29.1-b
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 20

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} \) \(\mathstrut +\mathstrut 2x \) \(\mathstrut -\mathstrut 4\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, -2w^{5} + w^{4} + 13w^{3} - 2w^{2} - 19w - 5]$ $\phantom{-}e$
9 $[9, 3, 2w^{5} - w^{4} - 14w^{3} + 2w^{2} + 23w + 6]$ $\phantom{-}0$
11 $[11, 11, w - 1]$ $-\frac{1}{2}e - 5$
25 $[25, 5, w^{3} + w^{2} - 4w - 3]$ $-\frac{7}{2}e - 2$
29 $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$ $\phantom{-}1$
41 $[41, 41, w^{4} - w^{3} - 5w^{2} + 3w + 3]$ $\phantom{-}3e + 6$
49 $[49, 7, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w + 1]$ $-2e - 2$
59 $[59, 59, 2w^{5} - w^{4} - 14w^{3} + 2w^{2} + 24w + 7]$ $\phantom{-}2e + 2$
59 $[59, 59, -w^{5} + 8w^{3} + 2w^{2} - 15w - 8]$ $\phantom{-}\frac{9}{2}e + 2$
61 $[61, 61, w^{5} - 7w^{3} - 2w^{2} + 12w + 4]$ $-\frac{1}{2}e + 5$
61 $[61, 61, -w^{5} + 7w^{3} - 11w - 1]$ $\phantom{-}5e + 2$
64 $[64, 2, 2]$ $\phantom{-}2e - 3$
71 $[71, 71, w^{3} + w^{2} - 5w - 3]$ $\phantom{-}\frac{5}{2}e - 7$
71 $[71, 71, -3w^{5} + w^{4} + 21w^{3} - w^{2} - 33w - 9]$ $\phantom{-}2e + 10$
79 $[79, 79, -2w^{5} + w^{4} + 13w^{3} - 3w^{2} - 19w - 5]$ $-10$
81 $[81, 3, 2w^{5} - w^{4} - 13w^{3} + w^{2} + 19w + 8]$ $-4e - 6$
89 $[89, 89, 2w^{5} - w^{4} - 13w^{3} + 2w^{2} + 20w + 7]$ $-\frac{3}{2}e - 4$
89 $[89, 89, -w^{5} + 8w^{3} + w^{2} - 16w - 5]$ $\phantom{-}e + 6$
89 $[89, 89, -3w^{5} + w^{4} + 20w^{3} - 30w - 11]$ $-\frac{3}{2}e + 1$
89 $[89, 89, -w^{5} + 7w^{3} + 2w^{2} - 11w - 4]$ $-\frac{11}{2}e - 8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
29 $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$ $-1$