Properties

Base field 6.6.1241125.1
Weight [2, 2, 2, 2, 2, 2]
Level norm 11
Level $[11, 11, w - 1]$
Label 6.6.1241125.1-11.1-b
Dimension 3
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 6.6.1241125.1

Generator \(w\), with minimal polynomial \(x^{6} - 7x^{4} - 2x^{3} + 11x^{2} + 7x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2, 2, 2]
Level $[11, 11, w - 1]$
Label 6.6.1241125.1-11.1-b
Dimension 3
Is CM no
Is base change no
Parent newspace dimension 4

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{3} \) \(\mathstrut -\mathstrut 2x^{2} \) \(\mathstrut -\mathstrut 4x \) \(\mathstrut +\mathstrut 4\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, -2w^{5} + w^{4} + 13w^{3} - 2w^{2} - 19w - 5]$ $\phantom{-}e$
9 $[9, 3, 2w^{5} - w^{4} - 14w^{3} + 2w^{2} + 23w + 6]$ $\phantom{-}e^{2} - e - 2$
11 $[11, 11, w - 1]$ $-1$
25 $[25, 5, w^{3} + w^{2} - 4w - 3]$ $-e^{2} + 4e + 4$
29 $[29, 29, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w]$ $\phantom{-}\frac{5}{2}e^{2} - 2e - 7$
41 $[41, 41, w^{4} - w^{3} - 5w^{2} + 3w + 3]$ $\phantom{-}e^{2} - 2e - 5$
49 $[49, 7, w^{5} - w^{4} - 7w^{3} + 4w^{2} + 11w + 1]$ $-4e^{2} + 3e + 12$
59 $[59, 59, 2w^{5} - w^{4} - 14w^{3} + 2w^{2} + 24w + 7]$ $-2e^{2} + e + 8$
59 $[59, 59, -w^{5} + 8w^{3} + 2w^{2} - 15w - 8]$ $\phantom{-}e + 1$
61 $[61, 61, w^{5} - 7w^{3} - 2w^{2} + 12w + 4]$ $-e^{2} + 4$
61 $[61, 61, -w^{5} + 7w^{3} - 11w - 1]$ $\phantom{-}e - 2$
64 $[64, 2, 2]$ $\phantom{-}\frac{3}{2}e^{2} - e + 5$
71 $[71, 71, w^{3} + w^{2} - 5w - 3]$ $-\frac{7}{2}e^{2} + 5e + 9$
71 $[71, 71, -3w^{5} + w^{4} + 21w^{3} - w^{2} - 33w - 9]$ $-2e^{2} + 3e + 8$
79 $[79, 79, -2w^{5} + w^{4} + 13w^{3} - 3w^{2} - 19w - 5]$ $-2e^{2} + 17$
81 $[81, 3, 2w^{5} - w^{4} - 13w^{3} + w^{2} + 19w + 8]$ $\phantom{-}\frac{7}{2}e^{2} - 6e - 9$
89 $[89, 89, 2w^{5} - w^{4} - 13w^{3} + 2w^{2} + 20w + 7]$ $-\frac{3}{2}e^{2} - 4e + 15$
89 $[89, 89, -w^{5} + 8w^{3} + w^{2} - 16w - 5]$ $\phantom{-}3e^{2} - 13$
89 $[89, 89, -3w^{5} + w^{4} + 20w^{3} - 30w - 11]$ $-\frac{3}{2}e^{2} + 9e + 3$
89 $[89, 89, -w^{5} + 7w^{3} + 2w^{2} - 11w - 4]$ $-e^{2} + 7e - 2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, w - 1]$ $1$