Base field 5.5.24217.1
Generator \(w\), with minimal polynomial \(x^{5} - 5 x^{3} - x^{2} + 3 x + 1\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2, 2]$ |
Level: | $[23, 23, w^{3} - 3 w]$ |
Dimension: | $1$ |
CM: | no |
Base change: | no |
Newspace dimension: | $3$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
5 | $[5, 5, -2 w^{4} + w^{3} + 9 w^{2} - 2 w - 3]$ | $-3$ |
17 | $[17, 17, -2 w^{4} + w^{3} + 9 w^{2} - 3 w - 5]$ | $-3$ |
17 | $[17, 17, w^{2} - 2]$ | $-7$ |
23 | $[23, 23, w^{3} - 3 w]$ | $-1$ |
29 | $[29, 29, 2 w^{4} - w^{3} - 10 w^{2} + 2 w + 4]$ | $-5$ |
32 | $[32, 2, 2]$ | $-7$ |
37 | $[37, 37, -w^{4} + w^{3} + 4 w^{2} - 2 w]$ | $-5$ |
41 | $[41, 41, -3 w^{4} + 2 w^{3} + 14 w^{2} - 5 w - 7]$ | $\phantom{-}5$ |
43 | $[43, 43, -3 w^{4} + w^{3} + 14 w^{2} - 3 w - 6]$ | $\phantom{-}0$ |
47 | $[47, 47, -3 w^{4} + 2 w^{3} + 14 w^{2} - 7 w - 6]$ | $-8$ |
53 | $[53, 53, 2 w^{4} - w^{3} - 8 w^{2} + 2 w + 1]$ | $\phantom{-}13$ |
53 | $[53, 53, -2 w^{4} + w^{3} + 10 w^{2} - 4 w - 6]$ | $-5$ |
59 | $[59, 59, -w^{4} + 4 w^{2} + 1]$ | $-12$ |
59 | $[59, 59, -3 w^{4} + 2 w^{3} + 14 w^{2} - 6 w - 8]$ | $\phantom{-}6$ |
61 | $[61, 61, 4 w^{4} - 2 w^{3} - 18 w^{2} + 5 w + 7]$ | $\phantom{-}1$ |
61 | $[61, 61, 3 w^{4} - w^{3} - 15 w^{2} + 2 w + 7]$ | $-11$ |
73 | $[73, 73, -4 w^{4} + 2 w^{3} + 18 w^{2} - 7 w - 6]$ | $-11$ |
83 | $[83, 83, -2 w^{4} + 9 w^{2} + 2 w - 4]$ | $-8$ |
83 | $[83, 83, -2 w^{4} + 2 w^{3} + 10 w^{2} - 7 w - 6]$ | $-14$ |
97 | $[97, 97, -2 w^{4} + w^{3} + 8 w^{2} - 3 w + 1]$ | $\phantom{-}7$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$23$ | $[23, 23, w^{3} - 3 w]$ | $1$ |