Properties

Label 5.5.24217.1-23.1-a
Base field 5.5.24217.1
Weight $[2, 2, 2, 2, 2]$
Level norm $23$
Level $[23, 23, w^3 - 3 w]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 5.5.24217.1

Generator \(w\), with minimal polynomial \(x^5 - 5 x^3 - x^2 + 3 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[23, 23, w^3 - 3 w]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $3$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
5 $[5, 5, -2 w^4 + w^3 + 9 w^2 - 2 w - 3]$ $-3$
17 $[17, 17, -2 w^4 + w^3 + 9 w^2 - 3 w - 5]$ $-3$
17 $[17, 17, w^2 - 2]$ $-7$
23 $[23, 23, w^3 - 3 w]$ $-1$
29 $[29, 29, 2 w^4 - w^3 - 10 w^2 + 2 w + 4]$ $-5$
32 $[32, 2, 2]$ $-7$
37 $[37, 37, -w^4 + w^3 + 4 w^2 - 2 w]$ $-5$
41 $[41, 41, -3 w^4 + 2 w^3 + 14 w^2 - 5 w - 7]$ $\phantom{-}5$
43 $[43, 43, -3 w^4 + w^3 + 14 w^2 - 3 w - 6]$ $\phantom{-}0$
47 $[47, 47, -3 w^4 + 2 w^3 + 14 w^2 - 7 w - 6]$ $-8$
53 $[53, 53, 2 w^4 - w^3 - 8 w^2 + 2 w + 1]$ $\phantom{-}13$
53 $[53, 53, -2 w^4 + w^3 + 10 w^2 - 4 w - 6]$ $-5$
59 $[59, 59, -w^4 + 4 w^2 + 1]$ $-12$
59 $[59, 59, -3 w^4 + 2 w^3 + 14 w^2 - 6 w - 8]$ $\phantom{-}6$
61 $[61, 61, 4 w^4 - 2 w^3 - 18 w^2 + 5 w + 7]$ $\phantom{-}1$
61 $[61, 61, 3 w^4 - w^3 - 15 w^2 + 2 w + 7]$ $-11$
73 $[73, 73, -4 w^4 + 2 w^3 + 18 w^2 - 7 w - 6]$ $-11$
83 $[83, 83, -2 w^4 + 9 w^2 + 2 w - 4]$ $-8$
83 $[83, 83, -2 w^4 + 2 w^3 + 10 w^2 - 7 w - 6]$ $-14$
97 $[97, 97, -2 w^4 + w^3 + 8 w^2 - 3 w + 1]$ $\phantom{-}7$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$23$ $[23, 23, w^3 - 3 w]$ $1$