Properties

Base field \(\Q(\zeta_{11})^+\)
Weight [2, 2, 2, 2, 2]
Level norm 131
Level $[131,131,w^{4} - w^{3} - 5w^{2} + w + 5]$
Label 5.5.14641.1-131.5-a
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\zeta_{11})^+\)

Generator \(w\), with minimal polynomial \(x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2, 2]
Level $[131,131,w^{4} - w^{3} - 5w^{2} + w + 5]$
Label 5.5.14641.1-131.5-a
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 6

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
11 $[11, 11, w^{4} + w^{3} - 4w^{2} - 3w + 2]$ $-4$
23 $[23, 23, -w^{4} + 3w^{2} + 1]$ $-6$
23 $[23, 23, -w^{4} + 3w^{2} + w - 2]$ $-3$
23 $[23, 23, w^{4} - w^{3} - 3w^{2} + 3w + 2]$ $-1$
23 $[23, 23, -w^{4} + w^{3} + 4w^{2} - 3w - 1]$ $-4$
23 $[23, 23, -w^{2} + w + 3]$ $-5$
32 $[32, 2, 2]$ $-3$
43 $[43, 43, -2w^{4} + w^{3} + 6w^{2} - 2w - 1]$ $\phantom{-}6$
43 $[43, 43, -w^{4} + 2w^{2} + w + 1]$ $-5$
43 $[43, 43, w^{3} + w^{2} - 4w - 2]$ $-11$
43 $[43, 43, 2w^{4} - w^{3} - 7w^{2} + 3w + 3]$ $-11$
43 $[43, 43, w^{4} - w^{3} - 4w^{2} + 4w + 2]$ $\phantom{-}1$
67 $[67, 67, 2w^{4} - 7w^{2} + 2]$ $\phantom{-}3$
67 $[67, 67, w^{4} - 2w^{3} - 3w^{2} + 6w + 2]$ $-3$
67 $[67, 67, 2w^{4} - 7w^{2} - w + 4]$ $\phantom{-}2$
67 $[67, 67, w^{4} - 2w^{3} - 4w^{2} + 6w + 2]$ $-10$
67 $[67, 67, -w^{4} + w^{3} + 5w^{2} - 3w - 3]$ $\phantom{-}1$
89 $[89, 89, w^{3} + w^{2} - 4w - 1]$ $\phantom{-}10$
89 $[89, 89, -2w^{4} + w^{3} + 7w^{2} - 3w - 2]$ $-15$
89 $[89, 89, -w^{4} + w^{3} + 4w^{2} - 4w - 3]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
131 $[131,131,w^{4} - w^{3} - 5w^{2} + w + 5]$ $1$