Properties

Base field 4.4.9909.1
Weight [2, 2, 2, 2]
Level norm 25
Level $[25, 25, w^{3} - 2w^{2} - 4w + 5]$
Label 4.4.9909.1-25.1-k
Dimension 4
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.9909.1

Generator \(w\), with minimal polynomial \(x^{4} - 6x^{2} - 3x + 3\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[25, 25, w^{3} - 2w^{2} - 4w + 5]$
Label 4.4.9909.1-25.1-k
Dimension 4
Is CM no
Is base change no
Parent newspace dimension 21

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{4} \) \(\mathstrut -\mathstrut 20x^{2} \) \(\mathstrut +\mathstrut 20\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}\frac{1}{8}e^{2} - \frac{7}{4}$
5 $[5, 5, w - 1]$ $\phantom{-}0$
7 $[7, 7, w^{3} - w^{2} - 4w + 1]$ $-\frac{3}{8}e^{2} + \frac{9}{4}$
11 $[11, 11, -w^{2} + w + 2]$ $\phantom{-}e$
13 $[13, 13, -w^{3} + w^{2} + 3w - 1]$ $\phantom{-}\frac{1}{8}e^{2} - \frac{15}{4}$
16 $[16, 2, 2]$ $\phantom{-}\frac{1}{4}e^{2} - \frac{3}{2}$
17 $[17, 17, -w^{3} + 5w + 2]$ $-e$
29 $[29, 29, -w^{2} + w + 1]$ $\phantom{-}\frac{1}{2}e^{3} - 10e$
37 $[37, 37, -w^{3} + 2w^{2} + 4w - 4]$ $\phantom{-}\frac{1}{8}e^{2} - \frac{11}{4}$
41 $[41, 41, -w^{3} + w^{2} + 5w + 1]$ $-\frac{1}{4}e^{3} + \frac{11}{2}e$
41 $[41, 41, w^{2} - 5]$ $-\frac{3}{8}e^{3} + \frac{17}{4}e$
47 $[47, 47, w^{3} - w^{2} - 5w - 2]$ $\phantom{-}\frac{1}{2}e^{3} - 8e$
47 $[47, 47, -w^{3} + 2w^{2} + 4w - 1]$ $-\frac{3}{8}e^{3} + \frac{33}{4}e$
53 $[53, 53, w^{3} - 4w - 4]$ $\phantom{-}\frac{1}{8}e^{3} + \frac{1}{4}e$
53 $[53, 53, 2w^{3} - 2w^{2} - 9w + 1]$ $\phantom{-}\frac{1}{8}e^{3} - \frac{19}{4}e$
61 $[61, 61, -w^{3} + w^{2} + 6w - 2]$ $-\frac{3}{8}e^{2} - \frac{7}{4}$
71 $[71, 71, w^{3} - w^{2} - 6w - 2]$ $-\frac{3}{4}e^{3} + \frac{27}{2}e$
103 $[103, 103, 2w^{3} - 2w^{2} - 8w + 1]$ $\phantom{-}\frac{7}{8}e^{2} - \frac{45}{4}$
103 $[103, 103, -3w^{3} + 3w^{2} + 13w - 5]$ $-\frac{1}{4}e^{2} - \frac{1}{2}$
109 $[109, 109, 2w^{3} - w^{2} - 8w - 4]$ $-\frac{3}{8}e^{2} + \frac{13}{4}$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, w - 1]$ $-1$