# Properties

 Base field 4.4.9909.1 Weight [2, 2, 2, 2] Level norm 25 Level $[25, 25, w^{3} - 2w^{2} - 4w + 5]$ Label 4.4.9909.1-25.1-h Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.9909.1

Generator $$w$$, with minimal polynomial $$x^{4} - 6x^{2} - 3x + 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2] Level $[25, 25, w^{3} - 2w^{2} - 4w + 5]$ Label 4.4.9909.1-25.1-h Dimension 2 Is CM no Is base change no Parent newspace dimension 21

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2}$$ $$\mathstrut -\mathstrut x$$ $$\mathstrut -\mathstrut 5$$
Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}e$
5 $[5, 5, w - 1]$ $\phantom{-}0$
7 $[7, 7, w^{3} - w^{2} - 4w + 1]$ $\phantom{-}e - 1$
11 $[11, 11, -w^{2} + w + 2]$ $\phantom{-}2$
13 $[13, 13, -w^{3} + w^{2} + 3w - 1]$ $-e + 4$
16 $[16, 2, 2]$ $\phantom{-}4$
17 $[17, 17, -w^{3} + 5w + 2]$ $-2$
29 $[29, 29, -w^{2} + w + 1]$ $-6$
37 $[37, 37, -w^{3} + 2w^{2} + 4w - 4]$ $\phantom{-}e + 1$
41 $[41, 41, -w^{3} + w^{2} + 5w + 1]$ $\phantom{-}4e$
41 $[41, 41, w^{2} - 5]$ $-2e + 6$
47 $[47, 47, w^{3} - w^{2} - 5w - 2]$ $-4e + 6$
47 $[47, 47, -w^{3} + 2w^{2} + 4w - 1]$ $\phantom{-}2e - 6$
53 $[53, 53, w^{3} - 4w - 4]$ $-2e + 8$
53 $[53, 53, 2w^{3} - 2w^{2} - 9w + 1]$ $-2e + 2$
61 $[61, 61, -w^{3} + w^{2} + 6w - 2]$ $-e - 1$
71 $[71, 71, w^{3} - w^{2} - 6w - 2]$ $-10$
103 $[103, 103, 2w^{3} - 2w^{2} - 8w + 1]$ $-e - 9$
103 $[103, 103, -3w^{3} + 3w^{2} + 13w - 5]$ $-4$
109 $[109, 109, 2w^{3} - w^{2} - 8w - 4]$ $\phantom{-}3e + 6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, w - 1]$ $1$