Properties

Label 4.4.9792.1-31.1-b
Base field 4.4.9792.1
Weight $[2, 2, 2, 2]$
Level norm $31$
Level $[31, 31, -2w^{3} + 7w^{2} + 5w - 12]$
Dimension $18$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.9792.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 7x^{2} + 2x + 7\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[31, 31, -2w^{3} + 7w^{2} + 5w - 12]$
Dimension: $18$
CM: no
Base change: no
Newspace dimension: $26$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{18} - 90x^{16} + 3326x^{14} - 65222x^{12} + 732231x^{10} - 4730352x^{8} + 16725808x^{6} - 28575568x^{4} + 17568016x^{2} - 846400\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, w^{3} - 3w^{2} - 3w + 4]$ $...$
7 $[7, 7, w]$ $...$
7 $[7, 7, w^{3} - 3w^{2} - 4w + 5]$ $...$
9 $[9, 3, w^{3} - 4w^{2} - w + 9]$ $\phantom{-}e$
17 $[17, 17, 2w^{3} - 6w^{2} - 7w + 8]$ $...$
17 $[17, 17, -w^{3} + 3w^{2} + 4w - 3]$ $...$
17 $[17, 17, -w + 2]$ $...$
23 $[23, 23, 2w^{3} - 7w^{2} - 4w + 12]$ $...$
23 $[23, 23, -w^{2} + 2w + 3]$ $...$
31 $[31, 31, -2w^{3} + 7w^{2} + 5w - 12]$ $-1$
31 $[31, 31, -w^{3} + 4w^{2} + 2w - 8]$ $...$
41 $[41, 41, 3w^{3} - 10w^{2} - 7w + 16]$ $...$
41 $[41, 41, 2w^{3} - 7w^{2} - 5w + 10]$ $...$
49 $[49, 7, 2w^{3} - 6w^{2} - 6w + 9]$ $...$
71 $[71, 71, w^{2} - 2w - 2]$ $...$
71 $[71, 71, 2w^{3} - 7w^{2} - 4w + 13]$ $...$
73 $[73, 73, 3w^{3} - 11w^{2} - 5w + 19]$ $...$
73 $[73, 73, -4w^{3} + 13w^{2} + 10w - 17]$ $...$
79 $[79, 79, 3w^{3} - 9w^{2} - 10w + 13]$ $...$
79 $[79, 79, -2w^{3} + 6w^{2} + 5w - 8]$ $...$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$31$ $[31, 31, -2w^{3} + 7w^{2} + 5w - 12]$ $1$