# Properties

 Label 4.4.9792.1-28.2-b Base field 4.4.9792.1 Weight $[2, 2, 2, 2]$ Level norm $28$ Level $[28,14,2w^{3} - 7w^{2} - 5w + 13]$ Dimension $2$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.9792.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 7x^{2} + 2x + 7$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[28,14,2w^{3} - 7w^{2} - 5w + 13]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $16$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} - 2$$
Norm Prime Eigenvalue
4 $[4, 2, w^{3} - 3w^{2} - 3w + 4]$ $-1$
7 $[7, 7, w]$ $\phantom{-}0$
7 $[7, 7, w^{3} - 3w^{2} - 4w + 5]$ $\phantom{-}1$
9 $[9, 3, w^{3} - 4w^{2} - w + 9]$ $\phantom{-}e$
17 $[17, 17, 2w^{3} - 6w^{2} - 7w + 8]$ $-4e$
17 $[17, 17, -w^{3} + 3w^{2} + 4w - 3]$ $\phantom{-}2e$
17 $[17, 17, -w + 2]$ $-2e$
23 $[23, 23, 2w^{3} - 7w^{2} - 4w + 12]$ $\phantom{-}e$
23 $[23, 23, -w^{2} + 2w + 3]$ $\phantom{-}5e$
31 $[31, 31, -2w^{3} + 7w^{2} + 5w - 12]$ $-2$
31 $[31, 31, -w^{3} + 4w^{2} + 2w - 8]$ $-10$
41 $[41, 41, 3w^{3} - 10w^{2} - 7w + 16]$ $-5e$
41 $[41, 41, 2w^{3} - 7w^{2} - 5w + 10]$ $-e$
49 $[49, 7, 2w^{3} - 6w^{2} - 6w + 9]$ $-12$
71 $[71, 71, w^{2} - 2w - 2]$ $\phantom{-}5e$
71 $[71, 71, 2w^{3} - 7w^{2} - 4w + 13]$ $-3e$
73 $[73, 73, 3w^{3} - 11w^{2} - 5w + 19]$ $-2$
73 $[73, 73, -4w^{3} + 13w^{2} + 10w - 17]$ $-2$
79 $[79, 79, 3w^{3} - 9w^{2} - 10w + 13]$ $\phantom{-}0$
79 $[79, 79, -2w^{3} + 6w^{2} + 5w - 8]$ $-16$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,w^{3} - 3w^{2} - 3w + 4]$ $1$
$7$ $[7,7,w^{3} - 3w^{2} - 4w + 5]$ $-1$