Properties

Label 4.4.9792.1-16.1-c
Base field 4.4.9792.1
Weight $[2, 2, 2, 2]$
Level norm $16$
Level $[16, 2, 2]$
Dimension $4$
CM yes
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.9792.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 7x^{2} + 2x + 7\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[16, 2, 2]$
Dimension: $4$
CM: yes
Base change: no
Newspace dimension: $12$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{4} - 4x^{3} - 28x^{2} + 112x + 16\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, w^{3} - 3w^{2} - 3w + 4]$ $\phantom{-}0$
7 $[7, 7, w]$ $\phantom{-}\frac{1}{4}e^{3} - 7e + 4$
7 $[7, 7, w^{3} - 3w^{2} - 4w + 5]$ $\phantom{-}e$
9 $[9, 3, w^{3} - 4w^{2} - w + 9]$ $\phantom{-}0$
17 $[17, 17, 2w^{3} - 6w^{2} - 7w + 8]$ $\phantom{-}0$
17 $[17, 17, -w^{3} + 3w^{2} + 4w - 3]$ $\phantom{-}0$
17 $[17, 17, -w + 2]$ $\phantom{-}0$
23 $[23, 23, 2w^{3} - 7w^{2} - 4w + 12]$ $\phantom{-}0$
23 $[23, 23, -w^{2} + 2w + 3]$ $\phantom{-}0$
31 $[31, 31, -2w^{3} + 7w^{2} + 5w - 12]$ $\phantom{-}\frac{3}{4}e^{3} - 19e + 8$
31 $[31, 31, -w^{3} + 4w^{2} + 2w - 8]$ $\phantom{-}\frac{1}{2}e^{3} - 11e + 4$
41 $[41, 41, 3w^{3} - 10w^{2} - 7w + 16]$ $\phantom{-}0$
41 $[41, 41, 2w^{3} - 7w^{2} - 5w + 10]$ $\phantom{-}0$
49 $[49, 7, 2w^{3} - 6w^{2} - 6w + 9]$ $-\frac{3}{4}e^{3} + 18e - 10$
71 $[71, 71, w^{2} - 2w - 2]$ $\phantom{-}0$
71 $[71, 71, 2w^{3} - 7w^{2} - 4w + 13]$ $\phantom{-}0$
73 $[73, 73, 3w^{3} - 11w^{2} - 5w + 19]$ $\phantom{-}\frac{5}{4}e^{3} + e^{2} - 32e - 2$
73 $[73, 73, -4w^{3} + 13w^{2} + 10w - 17]$ $-\frac{1}{4}e^{3} - e^{2} + 8e + 18$
79 $[79, 79, 3w^{3} - 9w^{2} - 10w + 13]$ $-\frac{1}{2}e^{3} + e^{2} + 13e - 16$
79 $[79, 79, -2w^{3} + 6w^{2} + 5w - 8]$ $-\frac{5}{4}e^{3} - e^{2} + 29e + 16$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, w^{3} - 3w^{2} - 3w + 4]$ $1$