# Properties

 Base field 4.4.9248.1 Weight [2, 2, 2, 2] Level norm 8 Level $[8, 4, -w^{2} - 2w + 1]$ Label 4.4.9248.1-8.4-d Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.9248.1

Generator $$w$$, with minimal polynomial $$x^{4} - 5x^{2} + 2$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2] Level $[8, 4, -w^{2} - 2w + 1]$ Label 4.4.9248.1-8.4-d Dimension 2 Is CM no Is base change no Parent newspace dimension 6

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2}$$ $$\mathstrut -\mathstrut 24$$
Norm Prime Eigenvalue
2 $[2, 2, w]$ $-2$
2 $[2, 2, w + 1]$ $\phantom{-}0$
13 $[13, 13, -w^{2} + w + 3]$ $\phantom{-}e$
13 $[13, 13, w^{2} + w - 3]$ $-e$
19 $[19, 19, -w^{3} + 3w + 1]$ $-e - 2$
19 $[19, 19, -w^{3} + 3w - 1]$ $\phantom{-}e - 2$
43 $[43, 43, -w^{2} + w - 1]$ $\phantom{-}2e + 2$
43 $[43, 43, w^{2} + w + 1]$ $-2e + 2$
49 $[49, 7, w^{3} + w^{2} - 6w - 3]$ $\phantom{-}e - 8$
49 $[49, 7, w^{3} - w^{2} - 6w + 3]$ $-e - 8$
53 $[53, 53, 2w^{3} - w^{2} - 9w + 3]$ $-6$
53 $[53, 53, 2w^{3} + w^{2} - 9w - 3]$ $-6$
59 $[59, 59, w^{3} - w^{2} - 4w + 1]$ $\phantom{-}2$
59 $[59, 59, -w^{3} - w^{2} + 4w + 1]$ $\phantom{-}2$
67 $[67, 67, 3w^{3} - 13w + 1]$ $-e - 6$
67 $[67, 67, -w^{3} + w^{2} + 6w - 5]$ $\phantom{-}e - 6$
81 $[81, 3, -3]$ $-2$
83 $[83, 83, -2w^{3} - w^{2} + 9w + 7]$ $\phantom{-}2e - 2$
83 $[83, 83, 4w^{3} - 18w - 1]$ $-2e - 2$
89 $[89, 89, -2w^{3} + 10w + 1]$ $-3e$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2,2,w+1]$ $-1$