Properties

Label 4.4.8789.1-25.1-e
Base field 4.4.8789.1
Weight $[2, 2, 2, 2]$
Level norm $25$
Level $[25, 25, w^{3} - w^{2} - 6w]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.8789.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 6x^{2} - 2x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[25, 25, w^{3} - w^{2} - 6w]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $14$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} + 2x - 12\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, -w^{3} + 2w^{2} + 3w]$ $\phantom{-}0$
7 $[7, 7, w - 1]$ $\phantom{-}e$
11 $[11, 11, -w^{3} + 2w^{2} + 4w]$ $\phantom{-}e + 2$
13 $[13, 13, -2w^{3} + 3w^{2} + 10w - 2]$ $\phantom{-}\frac{1}{2}e - 1$
16 $[16, 2, 2]$ $\phantom{-}1$
17 $[17, 17, -w^{3} + 2w^{2} + 5w - 3]$ $\phantom{-}\frac{1}{2}e + 4$
17 $[17, 17, -w^{3} + w^{2} + 5w]$ $\phantom{-}\frac{3}{2}e + 3$
17 $[17, 17, -w^{2} + 2w + 1]$ $-\frac{1}{2}e - 4$
19 $[19, 19, w^{2} - w - 2]$ $\phantom{-}2$
29 $[29, 29, w^{3} - 2w^{2} - 5w]$ $\phantom{-}\frac{1}{2}e - 8$
29 $[29, 29, w^{2} - w - 3]$ $-\frac{1}{2}e + 2$
31 $[31, 31, -w^{3} + 2w^{2} + 3w - 2]$ $\phantom{-}2e + 2$
43 $[43, 43, 2w^{3} - 3w^{2} - 11w]$ $-2e - 6$
47 $[47, 47, w^{3} - 7w - 4]$ $-6$
53 $[53, 53, -2w^{3} + 3w^{2} + 9w - 1]$ $-\frac{1}{2}e + 5$
61 $[61, 61, -w - 3]$ $-\frac{1}{2}e - 5$
73 $[73, 73, -w^{3} + 2w^{2} + 3w - 3]$ $-2$
73 $[73, 73, w^{3} - w^{2} - 7w - 1]$ $\phantom{-}\frac{3}{2}e - 8$
81 $[81, 3, -3]$ $\phantom{-}\frac{3}{2}e + 11$
83 $[83, 83, -2w^{3} + 3w^{2} + 9w + 1]$ $-3e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, -w^{3} + 2w^{2} + 3w]$ $1$