# Properties

 Base field 4.4.8768.1 Weight [2, 2, 2, 2] Level norm 28 Level $[28,14,w^{3} - 4w - 1]$ Label 4.4.8768.1-28.3-c Dimension 3 CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.8768.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 5x^{2} + 6x + 7$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2] Level $[28,14,w^{3} - 4w - 1]$ Label 4.4.8768.1-28.3-c Dimension 3 Is CM no Is base change no Parent newspace dimension 14

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{3}$$ $$\mathstrut +\mathstrut 7x^{2}$$ $$\mathstrut +\mathstrut x$$ $$\mathstrut -\mathstrut 46$$
Norm Prime Eigenvalue
4 $[4, 2, -w^{2} + w + 3]$ $-1$
7 $[7, 7, w]$ $-2e^{2} - 5e + 21$
7 $[7, 7, -w^{2} + 2w + 1]$ $\phantom{-}2e^{2} + 5e - 21$
7 $[7, 7, w^{2} - 2]$ $\phantom{-}1$
7 $[7, 7, w - 1]$ $\phantom{-}e$
23 $[23, 23, -w^{3} + w^{2} + 3w - 1]$ $-6e^{2} - 15e + 58$
23 $[23, 23, w^{3} - 2w^{2} - 2w + 2]$ $\phantom{-}4e^{2} + 8e - 44$
31 $[31, 31, w^{2} - 5]$ $\phantom{-}3e^{2} + 6e - 36$
31 $[31, 31, -w^{2} + 2w + 4]$ $\phantom{-}5e^{2} + 13e - 49$
41 $[41, 41, -w^{3} + 2w^{2} + 2w - 6]$ $\phantom{-}6e^{2} + 13e - 64$
41 $[41, 41, w^{3} - w^{2} - 3w - 3]$ $-9e^{2} - 21e + 93$
47 $[47, 47, w^{2} - 2w - 5]$ $-2e^{2} - 5e + 12$
47 $[47, 47, w^{2} - 6]$ $\phantom{-}8e^{2} + 19e - 82$
71 $[71, 71, -w^{3} + 2w^{2} + 3w - 1]$ $-3e^{2} - 7e + 31$
71 $[71, 71, -w^{3} + w^{2} + 4w - 3]$ $\phantom{-}e^{2} + 5e - 11$
79 $[79, 79, -w - 3]$ $-4e^{2} - 9e + 39$
79 $[79, 79, w - 4]$ $\phantom{-}e^{2} + 2e - 16$
81 $[81, 3, -3]$ $-13e^{2} - 33e + 125$
89 $[89, 89, w^{2} - 3w - 2]$ $-3e^{2} - 8e + 32$
89 $[89, 89, w^{2} + w - 4]$ $\phantom{-}9e^{2} + 20e - 99$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4,2,-w^{2} + w + 3]$ $1$
7 $[7,7,-w^{2} + 2]$ $-1$