# Properties

 Label 4.4.8768.1-28.1-i Base field 4.4.8768.1 Weight $[2, 2, 2, 2]$ Level norm $28$ Level $[28, 14, -w^{3} + w^{2} + 3w]$ Dimension $3$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.8768.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 5x^{2} + 6x + 7$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[28, 14, -w^{3} + w^{2} + 3w]$ Dimension: $3$ CM: no Base change: no Newspace dimension: $14$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} - 3x^{2} - 10x - 4$$
Norm Prime Eigenvalue
4 $[4, 2, -w^{2} + w + 3]$ $-1$
7 $[7, 7, w]$ $-1$
7 $[7, 7, -w^{2} + 2w + 1]$ $\phantom{-}e$
7 $[7, 7, w^{2} - 2]$ $\phantom{-}\frac{1}{2}e^{2} - \frac{5}{2}e - 4$
7 $[7, 7, w - 1]$ $-e$
23 $[23, 23, -w^{3} + w^{2} + 3w - 1]$ $\phantom{-}e^{2} - 4e - 2$
23 $[23, 23, w^{3} - 2w^{2} - 2w + 2]$ $-\frac{3}{2}e^{2} + \frac{15}{2}e + 7$
31 $[31, 31, w^{2} - 5]$ $-e - 2$
31 $[31, 31, -w^{2} + 2w + 4]$ $\phantom{-}\frac{3}{2}e^{2} - \frac{9}{2}e - 11$
41 $[41, 41, -w^{3} + 2w^{2} + 2w - 6]$ $\phantom{-}\frac{3}{2}e^{2} - \frac{13}{2}e - 5$
41 $[41, 41, w^{3} - w^{2} - 3w - 3]$ $-\frac{3}{2}e^{2} + \frac{17}{2}e + 8$
47 $[47, 47, w^{2} - 2w - 5]$ $\phantom{-}e^{2} - 3e + 2$
47 $[47, 47, w^{2} - 6]$ $\phantom{-}\frac{3}{2}e^{2} - \frac{11}{2}e - 10$
71 $[71, 71, -w^{3} + 2w^{2} + 3w - 1]$ $\phantom{-}2e^{2} - 6e - 8$
71 $[71, 71, -w^{3} + w^{2} + 4w - 3]$ $\phantom{-}\frac{1}{2}e^{2} - \frac{5}{2}e + 1$
79 $[79, 79, -w - 3]$ $-\frac{1}{2}e^{2} - \frac{1}{2}e + 9$
79 $[79, 79, w - 4]$ $-3e^{2} + 11e + 18$
81 $[81, 3, -3]$ $\phantom{-}\frac{1}{2}e^{2} + \frac{1}{2}e - 7$
89 $[89, 89, w^{2} - 3w - 2]$ $-4e^{2} + 17e + 24$
89 $[89, 89, w^{2} + w - 4]$ $\phantom{-}e^{2} - 5e - 2$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, -w^{2} + w + 3]$ $1$
$7$ $[7, 7, w]$ $1$