# Properties

 Label 4.4.8768.1-1.1-a Base field 4.4.8768.1 Weight $[2, 2, 2, 2]$ Level norm $1$ Level $[1, 1, 1]$ Dimension $3$ CM no Base change yes

# Related objects

• L-function not available

## Base field 4.4.8768.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 5x^{2} + 6x + 7$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[1, 1, 1]$ Dimension: $3$ CM: no Base change: yes Newspace dimension: $3$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} - 5x^{2} + x + 14$$
Norm Prime Eigenvalue
4 $[4, 2, -w^{2} + w + 3]$ $\phantom{-}e$
7 $[7, 7, w]$ $\phantom{-}e^{2} - 3e - 2$
7 $[7, 7, -w^{2} + 2w + 1]$ $-e^{2} + 2e + 4$
7 $[7, 7, w^{2} - 2]$ $-e^{2} + 2e + 4$
7 $[7, 7, w - 1]$ $\phantom{-}e^{2} - 3e - 2$
23 $[23, 23, -w^{3} + w^{2} + 3w - 1]$ $-3e^{2} + 6e + 12$
23 $[23, 23, w^{3} - 2w^{2} - 2w + 2]$ $-3e^{2} + 6e + 12$
31 $[31, 31, w^{2} - 5]$ $\phantom{-}3e^{2} - 5e - 18$
31 $[31, 31, -w^{2} + 2w + 4]$ $\phantom{-}3e^{2} - 5e - 18$
41 $[41, 41, -w^{3} + 2w^{2} + 2w - 6]$ $\phantom{-}3e^{2} - 3e - 18$
41 $[41, 41, w^{3} - w^{2} - 3w - 3]$ $\phantom{-}3e^{2} - 3e - 18$
47 $[47, 47, w^{2} - 2w - 5]$ $-3e + 6$
47 $[47, 47, w^{2} - 6]$ $-3e + 6$
71 $[71, 71, -w^{3} + 2w^{2} + 3w - 1]$ $-3e^{2} + 3e + 18$
71 $[71, 71, -w^{3} + w^{2} + 4w - 3]$ $-3e^{2} + 3e + 18$
79 $[79, 79, -w - 3]$ $\phantom{-}3e^{2} - 8e - 12$
79 $[79, 79, w - 4]$ $\phantom{-}3e^{2} - 8e - 12$
81 $[81, 3, -3]$ $-3e^{2} + 3e + 28$
89 $[89, 89, w^{2} - 3w - 2]$ $\phantom{-}3e^{2} - 6e - 12$
89 $[89, 89, w^{2} + w - 4]$ $\phantom{-}3e^{2} - 6e - 12$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is $$(1)$$.