# Properties

 Label 4.4.8069.1-7.2-a Base field 4.4.8069.1 Weight $[2, 2, 2, 2]$ Level norm $7$ Level $[7, 7, -w^{3} + 4w - 1]$ Dimension $2$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.8069.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 5x^{2} + 5x + 1$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[7, 7, -w^{3} + 4w - 1]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $4$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} - x - 8$$
Norm Prime Eigenvalue
5 $[5, 5, w^{3} - 4w]$ $-2$
7 $[7, 7, w + 1]$ $\phantom{-}e$
7 $[7, 7, -w^{3} + 4w - 1]$ $\phantom{-}1$
13 $[13, 13, -w^{2} + 3]$ $-e - 2$
16 $[16, 2, 2]$ $\phantom{-}1$
17 $[17, 17, w^{3} + w^{2} - 4w - 2]$ $-6$
17 $[17, 17, -w^{3} + 5w - 2]$ $-2e + 2$
19 $[19, 19, -w^{2} - w + 4]$ $\phantom{-}e - 4$
19 $[19, 19, -w^{2} - w + 1]$ $\phantom{-}e - 4$
29 $[29, 29, 2w^{3} - w^{2} - 9w + 5]$ $-e - 2$
41 $[41, 41, -w^{3} + w^{2} + 5w - 3]$ $-4e + 2$
43 $[43, 43, w^{3} - w^{2} - 4w + 2]$ $-3e + 4$
43 $[43, 43, w^{3} - 6w]$ $\phantom{-}2e - 4$
47 $[47, 47, -w^{3} - w^{2} + 5w]$ $\phantom{-}e - 8$
49 $[49, 7, w^{2} + 2w - 2]$ $-2e + 2$
59 $[59, 59, 2w^{3} - 8w + 3]$ $-4$
67 $[67, 67, w^{2} - w - 4]$ $\phantom{-}3e - 4$
79 $[79, 79, w^{3} - w^{2} - 4w + 1]$ $\phantom{-}2e$
81 $[81, 3, -3]$ $-2e + 2$
97 $[97, 97, w^{3} + w^{2} - 5w + 1]$ $\phantom{-}3e - 6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$7$ $[7, 7, -w^{3} + 4w - 1]$ $-1$