Properties

Base field 4.4.8069.1
Weight [2, 2, 2, 2]
Level norm 16
Level $[16, 2, 2]$
Label 4.4.8069.1-16.1-e
Dimension 4
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.8069.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 5x^{2} + 5x + 1\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[16, 2, 2]$
Label 4.4.8069.1-16.1-e
Dimension 4
Is CM no
Is base change no
Parent newspace dimension 10

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{4} \) \(\mathstrut -\mathstrut 22x^{2} \) \(\mathstrut +\mathstrut 100\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, w^{3} - 4w]$ $-\frac{1}{10}e^{3} + \frac{6}{5}e$
7 $[7, 7, w + 1]$ $\phantom{-}e$
7 $[7, 7, -w^{3} + 4w - 1]$ $\phantom{-}e$
13 $[13, 13, -w^{2} + 3]$ $-\frac{1}{10}e^{3} + \frac{11}{5}e$
16 $[16, 2, 2]$ $-1$
17 $[17, 17, w^{3} + w^{2} - 4w - 2]$ $-\frac{3}{10}e^{3} + \frac{18}{5}e$
17 $[17, 17, -w^{3} + 5w - 2]$ $\phantom{-}e^{2} - 12$
19 $[19, 19, -w^{2} - w + 4]$ $\phantom{-}e^{2} - 10$
19 $[19, 19, -w^{2} - w + 1]$ $-\frac{1}{5}e^{3} + \frac{17}{5}e$
29 $[29, 29, 2w^{3} - w^{2} - 9w + 5]$ $-\frac{1}{2}e^{3} + 6e$
41 $[41, 41, -w^{3} + w^{2} + 5w - 3]$ $\phantom{-}\frac{3}{10}e^{3} - \frac{23}{5}e$
43 $[43, 43, w^{3} - w^{2} - 4w + 2]$ $\phantom{-}\frac{2}{5}e^{3} - \frac{24}{5}e$
43 $[43, 43, w^{3} - 6w]$ $\phantom{-}10$
47 $[47, 47, -w^{3} - w^{2} + 5w]$ $-e^{2} + 10$
49 $[49, 7, w^{2} + 2w - 2]$ $\phantom{-}e^{2} - 14$
59 $[59, 59, 2w^{3} - 8w + 3]$ $-e$
67 $[67, 67, w^{2} - w - 4]$ $\phantom{-}0$
79 $[79, 79, w^{3} - w^{2} - 4w + 1]$ $-\frac{1}{5}e^{3} + \frac{12}{5}e$
81 $[81, 3, -3]$ $-e^{2} + 10$
97 $[97, 97, w^{3} + w^{2} - 5w + 1]$ $-4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
16 $[16, 2, 2]$ $1$