Properties

Label 4.4.7168.1-23.2-a
Base field 4.4.7168.1
Weight $[2, 2, 2, 2]$
Level norm $23$
Level $[23,23,w^{3} - w^{2} - 3w + 4]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.7168.1

Generator \(w\), with minimal polynomial \(x^{4} - 6x^{2} + 7\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[23,23,w^{3} - w^{2} - 3w + 4]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $10$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} - 8\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
7 $[7, 7, w]$ $\phantom{-}e$
9 $[9, 3, w^{2} + w - 1]$ $-e$
9 $[9, 3, w^{2} - w - 1]$ $\phantom{-}e$
17 $[17, 17, -w^{3} + 3w - 1]$ $-e$
17 $[17, 17, w^{3} - 3w - 1]$ $-2e$
23 $[23, 23, -w^{3} - w^{2} + 3w + 4]$ $-8$
23 $[23, 23, w^{3} - w^{2} - 3w + 4]$ $\phantom{-}1$
41 $[41, 41, w^{3} - w^{2} - 2w + 3]$ $-10$
41 $[41, 41, -w^{3} - w^{2} + 2w + 3]$ $-2$
49 $[49, 7, w^{2} - 6]$ $-2$
71 $[71, 71, w^{3} + 3w^{2} - 3w - 6]$ $-2e$
71 $[71, 71, -2w^{2} - 2w + 1]$ $\phantom{-}2e$
73 $[73, 73, w^{2} - 2w - 2]$ $\phantom{-}4e$
73 $[73, 73, w^{2} + 2w - 2]$ $-3e$
79 $[79, 79, w^{3} - w^{2} - 5w + 2]$ $\phantom{-}2e$
79 $[79, 79, -w^{3} - w^{2} + 5w + 2]$ $-e$
89 $[89, 89, 2w - 1]$ $\phantom{-}0$
89 $[89, 89, -2w - 1]$ $\phantom{-}0$
97 $[97, 97, -w^{3} + w^{2} + 4w - 1]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$23$ $[23,23,w^{3} - w^{2} - 3w + 4]$ $-1$