Properties

Label 4.4.6809.1-29.1-a
Base field 4.4.6809.1
Weight $[2, 2, 2, 2]$
Level norm $29$
Level $[29, 29, -w^{2} - w + 3]$
Dimension $5$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.6809.1

Generator \(w\), with minimal polynomial \(x^{4} - 5x^{2} - x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[29, 29, -w^{2} - w + 3]$
Dimension: $5$
CM: no
Base change: no
Newspace dimension: $19$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{5} + 2x^{4} - 5x^{3} - 6x^{2} + 6x - 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}e$
5 $[5, 5, w^{3} - 4w]$ $\phantom{-}e^{4} + 2e^{3} - 4e^{2} - 6e + 1$
8 $[8, 2, w^{3} - w^{2} - 4w + 3]$ $\phantom{-}2e^{4} + 5e^{3} - 8e^{2} - 16e + 6$
11 $[11, 11, w^{3} - 5w + 1]$ $\phantom{-}e^{4} + 2e^{3} - 5e^{2} - 7e + 3$
17 $[17, 17, -w^{3} - w^{2} + 5w + 4]$ $\phantom{-}e^{3} + 2e^{2} - 2e - 5$
23 $[23, 23, -w^{2} + 2]$ $-5e^{4} - 11e^{3} + 21e^{2} + 33e - 15$
29 $[29, 29, -w^{2} - w + 3]$ $\phantom{-}1$
31 $[31, 31, -w^{3} + 6w + 2]$ $-3e^{4} - 6e^{3} + 11e^{2} + 14e - 6$
43 $[43, 43, w^{3} - 6w]$ $-3e^{4} - 9e^{3} + 12e^{2} + 32e - 12$
47 $[47, 47, 2w^{3} - 9w]$ $\phantom{-}4e^{4} + 10e^{3} - 14e^{2} - 28e + 7$
47 $[47, 47, -2w^{3} + w^{2} + 8w - 2]$ $\phantom{-}2e^{4} + 4e^{3} - 9e^{2} - 12e + 5$
53 $[53, 53, -4w^{3} + 2w^{2} + 18w - 5]$ $\phantom{-}4e^{4} + 10e^{3} - 15e^{2} - 33e + 11$
59 $[59, 59, w^{2} - w - 5]$ $-e^{4} - 4e^{3} + 2e^{2} + 16e$
59 $[59, 59, 3w^{3} - 15w - 5]$ $-2e^{4} - 7e^{3} + 6e^{2} + 24e - 3$
71 $[71, 71, w^{3} - 3w - 3]$ $-7e^{4} - 17e^{3} + 29e^{2} + 56e - 23$
81 $[81, 3, -3]$ $\phantom{-}2e^{4} + 4e^{3} - 8e^{2} - 9e + 1$
83 $[83, 83, -2w^{3} + 8w + 3]$ $-e^{4} - 3e^{3} + 4e^{2} + 12e - 6$
89 $[89, 89, -2w^{3} + 11w - 2]$ $-2e^{4} - 3e^{3} + 6e^{2} + 4e - 2$
101 $[101, 101, 2w^{3} - w^{2} - 10w]$ $\phantom{-}e^{4} + 2e^{3} - 6e^{2} - 6e + 11$
101 $[101, 101, 2w^{3} - 2w^{2} - 10w + 3]$ $-7e^{4} - 14e^{3} + 33e^{2} + 47e - 29$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$29$ $[29, 29, -w^{2} - w + 3]$ $-1$