Properties

Base field 4.4.6125.1
Weight [2, 2, 2, 2]
Level norm 25
Level $[25, 5, -2w^{3} - 2w^{2} + 12w + 7]$
Label 4.4.6125.1-25.1-g
Dimension 4
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.6125.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 9x^{2} + 9x + 11\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[25, 5, -2w^{3} - 2w^{2} + 12w + 7]$
Label 4.4.6125.1-25.1-g
Dimension 4
Is CM no
Is base change no
Parent newspace dimension 12

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{4} \) \(\mathstrut -\mathstrut 100x^{2} \) \(\mathstrut +\mathstrut 2250\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, -2w^{3} - 2w^{2} + 13w + 8]$ $\phantom{-}0$
11 $[11, 11, 2w^{3} + 3w^{2} - 12w - 11]$ $\phantom{-}\frac{1}{5}e^{2} - 11$
11 $[11, 11, -w^{3} - 2w^{2} + 6w + 9]$ $\phantom{-}\frac{1}{5}e^{2} - 11$
11 $[11, 11, w^{3} + w^{2} - 7w - 4]$ $-\frac{1}{5}e^{2} + 9$
11 $[11, 11, w - 1]$ $-\frac{1}{5}e^{2} + 9$
16 $[16, 2, 2]$ $-6$
19 $[19, 19, -w^{2} + 4]$ $\phantom{-}e$
19 $[19, 19, 2w^{3} + 2w^{2} - 13w - 6]$ $\phantom{-}\frac{1}{15}e^{3} - \frac{11}{3}e$
19 $[19, 19, 3w^{3} + 4w^{2} - 18w - 16]$ $-e$
19 $[19, 19, -w^{3} - w^{2} + 5w + 3]$ $-\frac{1}{15}e^{3} + \frac{11}{3}e$
49 $[49, 7, 2w^{3} + 3w^{2} - 13w - 15]$ $\phantom{-}0$
59 $[59, 59, -3w^{3} - 4w^{2} + 19w + 14]$ $\phantom{-}e$
59 $[59, 59, 3w^{3} + 4w^{2} - 18w - 17]$ $-\frac{1}{15}e^{3} + \frac{11}{3}e$
59 $[59, 59, 2w^{3} + 3w^{2} - 11w - 13]$ $\phantom{-}\frac{1}{15}e^{3} - \frac{11}{3}e$
59 $[59, 59, -w^{3} - 2w^{2} + 7w + 9]$ $-e$
71 $[71, 71, 3w^{3} + 3w^{2} - 17w - 10]$ $-\frac{3}{5}e^{2} + 24$
71 $[71, 71, -2w^{3} - w^{2} + 14w + 2]$ $\phantom{-}\frac{3}{5}e^{2} - 36$
71 $[71, 71, 5w^{3} + 7w^{2} - 30w - 25]$ $-\frac{3}{5}e^{2} + 24$
71 $[71, 71, -3w^{3} - 4w^{2} + 16w + 16]$ $\phantom{-}\frac{3}{5}e^{2} - 36$
81 $[81, 3, -3]$ $-13$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, -2w^{3} - 2w^{2} + 13w + 8]$ $-1$