# Properties

 Label 4.4.5744.1-19.1-d Base field 4.4.5744.1 Weight $[2, 2, 2, 2]$ Level norm $19$ Level $[19, 19, -w^{3} + 5w]$ Dimension $2$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.5744.1

Generator $$w$$, with minimal polynomial $$x^{4} - 5x^{2} - 2x + 1$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[19, 19, -w^{3} + 5w]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $6$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} + x - 5$$
Norm Prime Eigenvalue
4 $[4, 2, -w^{3} + 4w + 1]$ $\phantom{-}e$
5 $[5, 5, w - 1]$ $-1$
7 $[7, 7, -w^{2} + w + 2]$ $-3$
13 $[13, 13, -w^{3} + w^{2} + 4w]$ $-e - 1$
13 $[13, 13, -w^{2} + 3]$ $-e + 1$
17 $[17, 17, -w^{2} + 2]$ $-3$
19 $[19, 19, -w^{3} + 5w]$ $\phantom{-}1$
31 $[31, 31, -w^{2} + 2w + 3]$ $\phantom{-}2$
37 $[37, 37, -2w^{3} + w^{2} + 8w - 1]$ $-e - 3$
43 $[43, 43, -w - 3]$ $\phantom{-}3e - 1$
53 $[53, 53, -w^{3} + 2w^{2} + 3w - 2]$ $-2e - 4$
53 $[53, 53, w^{3} - 6w - 2]$ $\phantom{-}2e - 1$
59 $[59, 59, 2w^{3} - w^{2} - 10w - 2]$ $\phantom{-}2e + 5$
61 $[61, 61, 2w^{3} - w^{2} - 10w]$ $-5e - 3$
61 $[61, 61, 2w^{3} - w^{2} - 8w]$ $-3e - 2$
71 $[71, 71, 2w^{3} - 9w - 2]$ $\phantom{-}e + 3$
73 $[73, 73, -w^{3} - w^{2} + 6w + 3]$ $-2e - 9$
81 $[81, 3, -3]$ $\phantom{-}5e + 2$
83 $[83, 83, -w^{3} + 2w^{2} + 3w - 3]$ $\phantom{-}3e - 9$
101 $[101, 101, 2w^{3} - 8w - 3]$ $\phantom{-}3e + 8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$19$ $[19, 19, -w^{3} + 5w]$ $-1$