# Properties

 Label 4.4.5725.1-79.1-a Base field 4.4.5725.1 Weight $[2, 2, 2, 2]$ Level norm $79$ Level $[79, 79, \frac{2}{3}w^{3} + w^{2} - \frac{10}{3}w - \frac{19}{3}]$ Dimension $1$ CM no Base change no

# Related objects

## Base field 4.4.5725.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 8x^{2} + 6x + 11$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[79, 79, \frac{2}{3}w^{3} + w^{2} - \frac{10}{3}w - \frac{19}{3}]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $27$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
9 $[9, 3, \frac{1}{3}w^{3} - \frac{8}{3}w - \frac{2}{3}]$ $\phantom{-}2$
9 $[9, 3, -w + 1]$ $\phantom{-}2$
11 $[11, 11, w]$ $\phantom{-}2$
11 $[11, 11, -\frac{1}{3}w^{3} + \frac{2}{3}w + \frac{5}{3}]$ $\phantom{-}5$
11 $[11, 11, \frac{1}{3}w^{3} - \frac{8}{3}w + \frac{1}{3}]$ $\phantom{-}1$
11 $[11, 11, -\frac{2}{3}w^{3} + \frac{13}{3}w + \frac{4}{3}]$ $\phantom{-}2$
16 $[16, 2, 2]$ $-4$
25 $[25, 5, \frac{2}{3}w^{3} - \frac{10}{3}w - \frac{1}{3}]$ $\phantom{-}5$
29 $[29, 29, -w - 3]$ $-4$
29 $[29, 29, -\frac{1}{3}w^{3} + \frac{8}{3}w - \frac{10}{3}]$ $\phantom{-}5$
31 $[31, 31, w^{3} - 6w + 1]$ $\phantom{-}2$
31 $[31, 31, w^{3} - 6w - 2]$ $\phantom{-}2$
41 $[41, 41, \frac{2}{3}w^{3} + w^{2} - \frac{13}{3}w - \frac{10}{3}]$ $-3$
41 $[41, 41, \frac{2}{3}w^{3} - \frac{13}{3}w + \frac{5}{3}]$ $-1$
59 $[59, 59, \frac{2}{3}w^{3} - \frac{13}{3}w + \frac{8}{3}]$ $\phantom{-}9$
59 $[59, 59, w^{3} + w^{2} - 6w - 4]$ $-6$
79 $[79, 79, \frac{2}{3}w^{3} + w^{2} - \frac{10}{3}w - \frac{19}{3}]$ $-1$
79 $[79, 79, \frac{1}{3}w^{3} + w^{2} - \frac{2}{3}w - \frac{17}{3}]$ $\phantom{-}5$
89 $[89, 89, \frac{4}{3}w^{3} - \frac{23}{3}w - \frac{5}{3}]$ $\phantom{-}10$
89 $[89, 89, \frac{1}{3}w^{3} + 2w^{2} - \frac{5}{3}w - \frac{32}{3}]$ $-8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$79$ $[79, 79, \frac{2}{3}w^{3} + w^{2} - \frac{10}{3}w - \frac{19}{3}]$ $1$