# Properties

 Label 4.4.4525.1-25.3-c Base field 4.4.4525.1 Weight $[2, 2, 2, 2]$ Level norm $25$ Level $[25,5,\frac{1}{3}w^{3} - \frac{4}{3}w^{2} - \frac{1}{3}w + 5]$ Dimension $2$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.4525.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 7x^{2} + 3x + 9$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[25,5,\frac{1}{3}w^{3} - \frac{4}{3}w^{2} - \frac{1}{3}w + 5]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $4$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} - 3x - 3$$
Norm Prime Eigenvalue
5 $[5, 5, -\frac{1}{3}w^{3} - \frac{2}{3}w^{2} + \frac{7}{3}w + 4]$ $\phantom{-}0$
5 $[5, 5, \frac{1}{3}w^{3} - \frac{4}{3}w^{2} - \frac{1}{3}w + 3]$ $\phantom{-}e$
9 $[9, 3, -w]$ $\phantom{-}e - 1$
9 $[9, 3, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{7}{3}w + 1]$ $-e + 1$
16 $[16, 2, 2]$ $\phantom{-}2e - 5$
19 $[19, 19, \frac{2}{3}w^{3} - \frac{2}{3}w^{2} - \frac{11}{3}w]$ $\phantom{-}2e - 2$
19 $[19, 19, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{1}{3}w + 1]$ $-2e + 2$
31 $[31, 31, \frac{2}{3}w^{3} + \frac{1}{3}w^{2} - \frac{11}{3}w - 2]$ $\phantom{-}2$
31 $[31, 31, \frac{2}{3}w^{3} - \frac{5}{3}w^{2} - \frac{5}{3}w + 5]$ $\phantom{-}2$
41 $[41, 41, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{7}{3}w - 6]$ $-e + 3$
41 $[41, 41, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{7}{3}w - 3]$ $-e + 3$
61 $[61, 61, \frac{1}{3}w^{3} - \frac{4}{3}w^{2} + \frac{2}{3}w + 4]$ $-3e + 10$
61 $[61, 61, \frac{2}{3}w^{3} + \frac{1}{3}w^{2} - \frac{14}{3}w - 2]$ $-3e + 10$
71 $[71, 71, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{1}{3}w - 7]$ $-4e + 6$
71 $[71, 71, \frac{1}{3}w^{3} + \frac{2}{3}w^{2} - \frac{7}{3}w]$ $-4e + 6$
89 $[89, 89, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{10}{3}w - 3]$ $-e + 6$
89 $[89, 89, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w - 1]$ $\phantom{-}e - 6$
101 $[101, 101, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{7}{3}w - 3]$ $\phantom{-}e + 6$
101 $[101, 101, -\frac{2}{3}w^{3} + \frac{5}{3}w^{2} + \frac{11}{3}w - 4]$ $-7e + 9$
101 $[101, 101, \frac{2}{3}w^{3} - \frac{5}{3}w^{2} - \frac{8}{3}w + 3]$ $-7e + 9$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5,5,\frac{1}{3}w^{3} + \frac{2}{3}w^{2} - \frac{7}{3}w - 4]$ $1$