Properties

Label 4.4.4525.1-19.2-a
Base field 4.4.4525.1
Weight $[2, 2, 2, 2]$
Level norm $19$
Level $[19,19,\frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{1}{3}w - 1]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.4525.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 7x^{2} + 3x + 9\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[19,19,\frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{1}{3}w - 1]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $2$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} - 2x - 7\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, -\frac{1}{3}w^{3} - \frac{2}{3}w^{2} + \frac{7}{3}w + 4]$ $\phantom{-}2$
5 $[5, 5, \frac{1}{3}w^{3} - \frac{4}{3}w^{2} - \frac{1}{3}w + 3]$ $\phantom{-}e$
9 $[9, 3, -w]$ $-e - 1$
9 $[9, 3, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{7}{3}w + 1]$ $\phantom{-}4$
16 $[16, 2, 2]$ $-\frac{1}{2}e - \frac{1}{2}$
19 $[19, 19, \frac{2}{3}w^{3} - \frac{2}{3}w^{2} - \frac{11}{3}w]$ $-\frac{3}{2}e + \frac{1}{2}$
19 $[19, 19, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{1}{3}w + 1]$ $-1$
31 $[31, 31, \frac{2}{3}w^{3} + \frac{1}{3}w^{2} - \frac{11}{3}w - 2]$ $\phantom{-}\frac{5}{2}e - \frac{7}{2}$
31 $[31, 31, \frac{2}{3}w^{3} - \frac{5}{3}w^{2} - \frac{5}{3}w + 5]$ $-2e + 2$
41 $[41, 41, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{7}{3}w - 6]$ $\phantom{-}e + 7$
41 $[41, 41, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{7}{3}w - 3]$ $\phantom{-}2$
61 $[61, 61, \frac{1}{3}w^{3} - \frac{4}{3}w^{2} + \frac{2}{3}w + 4]$ $-5$
61 $[61, 61, \frac{2}{3}w^{3} + \frac{1}{3}w^{2} - \frac{14}{3}w - 2]$ $-\frac{1}{2}e - \frac{1}{2}$
71 $[71, 71, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + \frac{1}{3}w - 7]$ $-2e - 3$
71 $[71, 71, \frac{1}{3}w^{3} + \frac{2}{3}w^{2} - \frac{7}{3}w]$ $\phantom{-}e + 5$
89 $[89, 89, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{10}{3}w - 3]$ $-e + 1$
89 $[89, 89, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w - 1]$ $\phantom{-}\frac{5}{2}e + \frac{9}{2}$
101 $[101, 101, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{7}{3}w - 3]$ $\phantom{-}e + 1$
101 $[101, 101, -\frac{2}{3}w^{3} + \frac{5}{3}w^{2} + \frac{11}{3}w - 4]$ $-5e + 5$
101 $[101, 101, \frac{2}{3}w^{3} - \frac{5}{3}w^{2} - \frac{8}{3}w + 3]$ $-\frac{3}{2}e + \frac{17}{2}$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$19$ $[19,19,\frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{1}{3}w - 1]$ $1$