/* This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. */ P. = PolynomialRing(QQ) g = P([11, 0, -7, 0, 1]) F. = NumberField(g) ZF = F.ring_of_integers() NN = ZF.ideal([49,7,w^3 + w^2 - 4*w - 1]) primes_array = [ [4, 2, -w^2 + w + 3],\ [5, 5, w + 1],\ [5, 5, -w^3 + w^2 + 4*w - 4],\ [11, 11, w],\ [29, 29, w^3 - 2*w^2 - 3*w + 7],\ [29, 29, -w^3 - 2*w^2 + 3*w + 7],\ [31, 31, -w^3 + w^2 + 4*w - 2],\ [31, 31, -w^3 - w^2 + 4*w + 2],\ [41, 41, w^3 + 2*w^2 - 4*w - 6],\ [41, 41, w^3 - 5*w + 2],\ [49, 7, -w^3 + w^2 + 4*w - 1],\ [49, 7, w^3 + w^2 - 4*w - 1],\ [59, 59, -3*w^2 - w + 10],\ [59, 59, -3*w^2 + w + 10],\ [61, 61, -2*w^3 + 2*w^2 + 7*w - 5],\ [61, 61, 2*w^3 + w^2 - 8*w - 6],\ [71, 71, 2*w^2 + w - 9],\ [71, 71, 2*w^2 - w - 9],\ [81, 3, -3],\ [101, 101, 2*w^2 - w - 10],\ [101, 101, 2*w^2 + w - 10],\ [109, 109, 2*w^3 + w^2 - 8*w - 3],\ [109, 109, -2*w^3 + w^2 + 8*w - 3],\ [121, 11, -w^2 + 7],\ [131, 131, 4*w^2 - 2*w - 15],\ [131, 131, 2*w^2 + 2*w - 3],\ [131, 131, 2*w^2 - 2*w - 3],\ [131, 131, -w^3 - w^2 + 3*w + 7],\ [139, 139, w^3 + 4*w^2 - 5*w - 16],\ [139, 139, w^3 + 3*w^2 - 6*w - 10],\ [139, 139, 2*w^3 - w^2 - 8*w + 1],\ [139, 139, -4*w^2 - w + 12],\ [149, 149, 2*w^3 - w^2 - 8*w + 4],\ [149, 149, 2*w^3 + w^2 - 8*w - 4],\ [151, 151, 3*w^2 - 3*w - 8],\ [151, 151, 2*w^3 - 4*w^2 - 8*w + 17],\ [151, 151, w^2 - 2*w - 7],\ [151, 151, w^3 + 2*w^2 - 6*w - 8],\ [179, 179, w^3 - w^2 - 5*w + 1],\ [179, 179, -w^3 - w^2 + 5*w + 1],\ [191, 191, 2*w^3 - w^2 - 7*w + 2],\ [191, 191, 3*w^3 - 2*w^2 - 10*w + 2],\ [199, 199, w^3 - 4*w^2 - 3*w + 13],\ [199, 199, -w^3 - 4*w^2 + 3*w + 13],\ [211, 211, -w^3 + w^2 + 6*w - 5],\ [211, 211, w^3 - 5*w - 5],\ [211, 211, -w^3 + 5*w - 5],\ [211, 211, w^3 + w^2 - 6*w - 5],\ [229, 229, w^3 - 4*w^2 - 2*w + 14],\ [229, 229, 2*w^3 + 3*w^2 - 7*w - 12],\ [229, 229, 2*w^3 - 3*w^2 - 7*w + 12],\ [229, 229, 2*w^3 + w^2 - 7*w - 8],\ [241, 241, w^3 + w^2 - 6*w - 4],\ [241, 241, -w^3 + w^2 + 6*w - 4],\ [251, 251, 2*w^2 - w - 2],\ [251, 251, 2*w^2 + w - 2],\ [271, 271, 2*w^3 - 2*w^2 - 8*w + 5],\ [271, 271, -4*w^2 - w + 14],\ [271, 271, -4*w^2 + w + 14],\ [271, 271, 2*w^3 + 2*w^2 - 8*w - 5],\ [281, 281, -2*w^3 - w^2 + 9*w + 2],\ [281, 281, 2*w^3 - w^2 - 9*w + 2],\ [311, 311, -w^3 + 3*w - 5],\ [311, 311, w^3 - 3*w - 5],\ [331, 331, -3*w^3 + 3*w^2 + 12*w - 13],\ [331, 331, 3*w^3 + 3*w^2 - 12*w - 13],\ [349, 349, 2*w^3 + 2*w^2 - 7*w - 10],\ [349, 349, -2*w^3 + 2*w^2 + 7*w - 10],\ [361, 19, 4*w^2 - 15],\ [361, 19, -4*w^2 + 13],\ [379, 379, -w^3 + 3*w^2 + 3*w - 13],\ [379, 379, w^3 + 3*w^2 - 3*w - 13],\ [409, 409, 3*w^3 - 2*w^2 - 11*w + 2],\ [409, 409, w^3 + 3*w^2 - 6*w - 9],\ [419, 419, -w^3 + w^2 + 6*w + 2],\ [419, 419, -3*w^3 + 5*w^2 + 13*w - 19],\ [421, 421, -w^3 + 3*w^2 + 7*w - 13],\ [421, 421, 2*w^3 - 2*w^2 - 9*w + 6],\ [421, 421, -2*w^3 - 2*w^2 + 9*w + 6],\ [421, 421, w^3 + 3*w^2 - 7*w - 13],\ [439, 439, 3*w^2 + 2*w - 13],\ [439, 439, 3*w^3 + 2*w^2 - 12*w - 10],\ [439, 439, -3*w^3 + 2*w^2 + 12*w - 10],\ [439, 439, 3*w^2 - 2*w - 13],\ [449, 449, 2*w^3 - 4*w^2 - 9*w + 14],\ [449, 449, -3*w^3 + 3*w^2 + 11*w - 9],\ [449, 449, 3*w^3 + 3*w^2 - 11*w - 9],\ [449, 449, w^3 - 2*w^2 - 5*w + 2],\ [461, 461, -w - 5],\ [461, 461, w - 5],\ [499, 499, w^3 - 5*w^2 - w + 17],\ [499, 499, -w^3 - 5*w^2 + w + 17],\ [509, 509, w^3 + 5*w^2 - 4*w - 16],\ [509, 509, w^2 - 2*w - 10],\ [509, 509, w^2 + 2*w - 10],\ [509, 509, w^3 - w^2 - 5*w + 9],\ [541, 541, 3*w^3 - 10*w - 6],\ [541, 541, -2*w^3 + 5*w^2 + 5*w - 16],\ [569, 569, 3*w^3 + 2*w^2 - 13*w - 6],\ [569, 569, -2*w^3 + 4*w^2 + 7*w - 10],\ [599, 599, w^3 + 2*w^2 - 7*w - 10],\ [599, 599, -w^3 + 2*w^2 + 7*w - 10],\ [601, 601, -3*w^3 - w^2 + 12*w + 6],\ [601, 601, 3*w^3 - w^2 - 12*w + 6],\ [619, 619, 3*w^3 - 12*w + 2],\ [619, 619, -3*w^3 + 12*w + 2],\ [631, 631, -w^3 + w^2 + 2*w - 8],\ [631, 631, w^3 + w^2 - 2*w - 8],\ [641, 641, w^3 + w^2 - 7*w - 1],\ [641, 641, -3*w^3 - 2*w^2 + 12*w + 4],\ [641, 641, 3*w^3 - 2*w^2 - 12*w + 4],\ [641, 641, w^3 - w^2 - 7*w + 1],\ [659, 659, -2*w^3 + w^2 + 10*w - 1],\ [659, 659, -w^3 + 5*w^2 + 4*w - 19],\ [659, 659, w^3 + 5*w^2 - 4*w - 19],\ [659, 659, 2*w^3 + w^2 - 10*w - 1],\ [691, 691, 3*w^2 - 2*w - 14],\ [691, 691, 3*w^2 + 2*w - 14],\ [701, 701, w^3 + 4*w^2 - 7*w - 12],\ [701, 701, 3*w^3 - w^2 - 12*w - 1],\ [719, 719, -w^3 + 7*w - 3],\ [719, 719, w^3 - 7*w - 3],\ [739, 739, 3*w^3 + w^2 - 12*w - 3],\ [739, 739, w^3 + 2*w^2 - 3*w - 1],\ [739, 739, -w^3 + 2*w^2 + 3*w - 1],\ [739, 739, -3*w^3 + w^2 + 12*w - 3],\ [751, 751, -2*w^3 + 6*w^2 + 7*w - 20],\ [751, 751, 2*w^3 + 6*w^2 - 7*w - 20],\ [761, 761, 2*w^3 + 6*w^2 - 8*w - 21],\ [761, 761, -2*w^3 + 6*w^2 + 8*w - 21],\ [769, 769, -2*w^3 + 6*w^2 + 8*w - 23],\ [769, 769, w^2 + 2*w + 3],\ [809, 809, 2*w^3 + 3*w^2 - 7*w - 14],\ [809, 809, -2*w^3 + 3*w^2 + 7*w - 14],\ [821, 821, -3*w^3 - w^2 + 11*w + 1],\ [821, 821, 3*w^3 - w^2 - 11*w + 1],\ [829, 829, 3*w^3 - w^2 - 12*w + 4],\ [829, 829, w^3 - 4*w^2 - 6*w + 12],\ [829, 829, -w^3 - 4*w^2 + 6*w + 12],\ [829, 829, -3*w^3 - w^2 + 12*w + 4],\ [839, 839, -w^3 + 3*w - 6],\ [839, 839, w^3 - 3*w - 6],\ [841, 29, 5*w^2 - 19],\ [859, 859, w^3 + 2*w^2 - 7*w - 9],\ [859, 859, -w^3 + 2*w^2 + 7*w - 9],\ [911, 911, -2*w^3 + 4*w^2 + 9*w - 13],\ [911, 911, 2*w^3 + 4*w^2 - 9*w - 13],\ [919, 919, 2*w^3 + 4*w^2 - 7*w - 17],\ [919, 919, 3*w^3 + 2*w^2 - 11*w - 6],\ [919, 919, 3*w^3 - 2*w^2 - 11*w + 6],\ [919, 919, 2*w^3 - 4*w^2 - 7*w + 17],\ [941, 941, -2*w^3 + 2*w^2 + 7*w - 15],\ [941, 941, 2*w^3 + 2*w^2 - 7*w - 15],\ [961, 31, -2*w^2 + 13],\ [971, 971, w^3 + 2*w^2 - 7*w - 7],\ [971, 971, -w^3 + 2*w^2 + 7*w - 7],\ [991, 991, 3*w^3 + 2*w^2 - 11*w - 7],\ [991, 991, -3*w^3 + 2*w^2 + 11*w - 7]] primes = [ZF.ideal(I) for I in primes_array] heckePol = x^6 + 6*x^5 + 3*x^4 - 34*x^3 - 41*x^2 + 30*x + 25 K. = NumberField(heckePol) hecke_eigenvalues_array = [e, -4/5*e^5 - 14/5*e^4 + 23/5*e^3 + 76/5*e^2 - 36/5*e - 8, 2/5*e^5 + 7/5*e^4 - 14/5*e^3 - 43/5*e^2 + 28/5*e + 5, 4/5*e^5 + 14/5*e^4 - 18/5*e^3 - 71/5*e^2 + 6/5*e + 5, 7/5*e^5 + 22/5*e^4 - 44/5*e^3 - 128/5*e^2 + 53/5*e + 16, 1/5*e^5 + 6/5*e^4 + 3/5*e^3 - 34/5*e^2 - 26/5*e + 8, 7/5*e^5 + 22/5*e^4 - 44/5*e^3 - 118/5*e^2 + 68/5*e + 4, -6/5*e^5 - 21/5*e^4 + 32/5*e^3 + 114/5*e^2 - 44/5*e - 15, 2/5*e^5 + 7/5*e^4 - 14/5*e^3 - 48/5*e^2 + 18/5*e + 4, -4/5*e^5 - 14/5*e^4 + 23/5*e^3 + 86/5*e^2 - 16/5*e - 14, 6/5*e^5 + 21/5*e^4 - 32/5*e^3 - 104/5*e^2 + 44/5*e + 3, 1, 2/5*e^5 + 12/5*e^4 + 1/5*e^3 - 68/5*e^2 - 47/5*e + 6, 2/5*e^5 + 2/5*e^4 - 24/5*e^3 - 3/5*e^2 + 88/5*e + 1, -9/5*e^5 - 24/5*e^4 + 68/5*e^3 + 136/5*e^2 - 131/5*e - 14, -2/5*e^5 - 7/5*e^4 + 4/5*e^3 + 33/5*e^2 + 22/5*e - 8, -11/5*e^5 - 36/5*e^4 + 57/5*e^3 + 184/5*e^2 - 54/5*e - 16, -11/5*e^5 - 36/5*e^4 + 77/5*e^3 + 214/5*e^2 - 154/5*e - 26, 6/5*e^5 + 26/5*e^4 - 22/5*e^3 - 139/5*e^2 + 14/5*e + 15, 2*e^5 + 6*e^4 - 14*e^3 - 34*e^2 + 27*e + 12, 6/5*e^5 + 21/5*e^4 - 32/5*e^3 - 99/5*e^2 + 54/5*e, -14/5*e^5 - 44/5*e^4 + 88/5*e^3 + 251/5*e^2 - 106/5*e - 27, 2*e^5 + 5*e^4 - 16*e^3 - 30*e^2 + 30*e + 20, 4/5*e^5 + 9/5*e^4 - 38/5*e^3 - 56/5*e^2 + 86/5*e - 1, 22/5*e^5 + 72/5*e^4 - 124/5*e^3 - 393/5*e^2 + 128/5*e + 38, 11/5*e^5 + 36/5*e^4 - 72/5*e^3 - 224/5*e^2 + 109/5*e + 36, -16/5*e^5 - 51/5*e^4 + 102/5*e^3 + 289/5*e^2 - 164/5*e - 35, 6/5*e^5 + 26/5*e^4 - 17/5*e^3 - 154/5*e^2 - 66/5*e + 20, 8/5*e^5 + 28/5*e^4 - 56/5*e^3 - 172/5*e^2 + 122/5*e + 24, -28/5*e^5 - 98/5*e^4 + 151/5*e^3 + 552/5*e^2 - 137/5*e - 64, 8/5*e^5 + 33/5*e^4 - 26/5*e^3 - 187/5*e^2 - 48/5*e + 19, 6/5*e^5 + 11/5*e^4 - 62/5*e^3 - 69/5*e^2 + 174/5*e + 8, 2/5*e^5 + 12/5*e^4 + 1/5*e^3 - 78/5*e^2 - 37/5*e + 16, -19/5*e^5 - 64/5*e^4 + 113/5*e^3 + 366/5*e^2 - 176/5*e - 52, -2*e^4 - 6*e^3 + 11*e^2 + 30*e - 7, 2*e^5 + 8*e^4 - 9*e^3 - 48*e^2 + e + 32, -14/5*e^5 - 54/5*e^4 + 58/5*e^3 + 286/5*e^2 - 21/5*e - 30, 2*e^5 + 7*e^4 - 12*e^3 - 36*e^2 + 24*e + 3, 18/5*e^5 + 63/5*e^4 - 86/5*e^3 - 342/5*e^2 + 32/5*e + 34, 8/5*e^5 + 38/5*e^4 - 26/5*e^3 - 237/5*e^2 - 48/5*e + 34, 19/5*e^5 + 74/5*e^4 - 83/5*e^3 - 406/5*e^2 + 36/5*e + 40, 4/5*e^5 + 4/5*e^4 - 43/5*e^3 - 6/5*e^2 + 116/5*e - 10, 4/5*e^5 + 24/5*e^4 - 8/5*e^3 - 146/5*e^2 - 4/5*e + 22, 7/5*e^5 + 22/5*e^4 - 39/5*e^3 - 98/5*e^2 + 38/5*e - 4, -9/5*e^5 - 24/5*e^4 + 78/5*e^3 + 156/5*e^2 - 186/5*e - 14, -2*e^5 - 8*e^4 + 7*e^3 + 40*e^2 + 7*e - 18, -21/5*e^5 - 66/5*e^4 + 132/5*e^3 + 374/5*e^2 - 194/5*e - 46, 19/5*e^5 + 54/5*e^4 - 143/5*e^3 - 306/5*e^2 + 276/5*e + 20, -12/5*e^5 - 47/5*e^4 + 54/5*e^3 + 253/5*e^2 - 18/5*e - 16, -7/5*e^5 - 22/5*e^4 + 49/5*e^3 + 108/5*e^2 - 128/5*e - 6, 8/5*e^5 + 28/5*e^4 - 46/5*e^3 - 162/5*e^2 + 32/5*e + 14, 1/5*e^5 + 6/5*e^4 + 13/5*e^3 - 14/5*e^2 - 61/5*e - 2, 12/5*e^5 + 32/5*e^4 - 84/5*e^3 - 178/5*e^2 + 138/5*e + 24, -2/5*e^5 - 2/5*e^4 + 24/5*e^3 - 2/5*e^2 - 103/5*e + 12, -34/5*e^5 - 119/5*e^4 + 188/5*e^3 + 656/5*e^2 - 216/5*e - 65, 1/5*e^5 + 6/5*e^4 - 17/5*e^3 - 64/5*e^2 + 64/5*e + 20, 2*e^5 + 6*e^4 - 12*e^3 - 30*e^2 + 16*e + 8, 2*e^5 + 7*e^4 - 10*e^3 - 36*e^2 + 14*e + 12, 2*e^5 + 6*e^4 - 13*e^3 - 28*e^2 + 24*e - 8, -22/5*e^5 - 82/5*e^4 + 114/5*e^3 + 468/5*e^2 - 78/5*e - 53, -14/5*e^5 - 54/5*e^4 + 83/5*e^3 + 336/5*e^2 - 111/5*e - 54, -37/5*e^5 - 132/5*e^4 + 199/5*e^3 + 738/5*e^2 - 208/5*e - 78, -14/5*e^5 - 54/5*e^4 + 58/5*e^3 + 281/5*e^2 - 6/5*e - 20, 3/5*e^5 + 8/5*e^4 - 21/5*e^3 - 52/5*e^2 + 22/5*e + 16, -3/5*e^5 - 18/5*e^4 - 9/5*e^3 + 72/5*e^2 + 63/5*e - 6, -4*e^5 - 14*e^4 + 21*e^3 + 72*e^2 - 25*e - 22, 2/5*e^5 - 3/5*e^4 - 24/5*e^3 + 37/5*e^2 + 98/5*e + 1, 1/5*e^5 - 4/5*e^4 - 37/5*e^3 - 4/5*e^2 + 184/5*e + 8, -27/5*e^5 - 102/5*e^4 + 139/5*e^3 + 578/5*e^2 - 168/5*e - 84, e^5 + 4*e^4 - 2*e^3 - 22*e^2 - 12*e + 22, 13/5*e^5 + 48/5*e^4 - 81/5*e^3 - 312/5*e^2 + 112/5*e + 54, -17/5*e^5 - 42/5*e^4 + 134/5*e^3 + 238/5*e^2 - 263/5*e - 26, 32/5*e^5 + 112/5*e^4 - 184/5*e^3 - 613/5*e^2 + 248/5*e + 41, 11/5*e^5 + 36/5*e^4 - 62/5*e^3 - 184/5*e^2 + 69/5*e - 2, 32/5*e^5 + 107/5*e^4 - 174/5*e^3 - 593/5*e^2 + 158/5*e + 76, -32/5*e^5 - 112/5*e^4 + 159/5*e^3 + 578/5*e^2 - 143/5*e - 36, -4/5*e^5 + 1/5*e^4 + 68/5*e^3 - 14/5*e^2 - 246/5*e + 11, 18/5*e^5 + 48/5*e^4 - 146/5*e^3 - 272/5*e^2 + 312/5*e + 22, 3*e^5 + 10*e^4 - 18*e^3 - 52*e^2 + 24*e + 8, -2/5*e^5 + 3/5*e^4 + 24/5*e^3 - 32/5*e^2 - 88/5*e - 13, 3/5*e^5 + 18/5*e^4 - 11/5*e^3 - 142/5*e^2 + 47/5*e + 54, -27/5*e^5 - 102/5*e^4 + 149/5*e^3 + 618/5*e^2 - 158/5*e - 86, -3*e^4 - 10*e^3 + 16*e^2 + 42*e - 5, 12/5*e^5 + 37/5*e^4 - 84/5*e^3 - 243/5*e^2 + 98/5*e + 41, -13/5*e^5 - 48/5*e^4 + 66/5*e^3 + 272/5*e^2 - 52/5*e - 44, 18/5*e^5 + 58/5*e^4 - 116/5*e^3 - 337/5*e^2 + 212/5*e + 39, -22/5*e^5 - 82/5*e^4 + 114/5*e^3 + 473/5*e^2 - 148/5*e - 76, 4/5*e^5 + 14/5*e^4 - 23/5*e^3 - 116/5*e^2 + 31/5*e + 52, 16/5*e^5 + 66/5*e^4 - 62/5*e^3 - 344/5*e^2 + 14/5*e + 30, -17/5*e^5 - 72/5*e^4 + 64/5*e^3 + 378/5*e^2 - 48/5*e - 34, -8*e^5 - 30*e^4 + 37*e^3 + 164*e^2 - 12*e - 90, -38/5*e^5 - 118/5*e^4 + 266/5*e^3 + 692/5*e^2 - 472/5*e - 74, -21/5*e^5 - 76/5*e^4 + 117/5*e^3 + 434/5*e^2 - 119/5*e - 48, -2*e^5 - 6*e^4 + 20*e^3 + 37*e^2 - 66*e - 10, 58/5*e^5 + 198/5*e^4 - 316/5*e^3 - 1062/5*e^2 + 352/5*e + 84, -32/5*e^5 - 97/5*e^4 + 224/5*e^3 + 543/5*e^2 - 428/5*e - 36, -2*e^5 - 6*e^4 + 15*e^3 + 42*e^2 - 21*e - 58, 16/5*e^5 + 56/5*e^4 - 92/5*e^3 - 304/5*e^2 + 134/5*e + 30, 2*e^5 + 8*e^4 - 4*e^3 - 36*e^2 - 16*e, -34/5*e^5 - 129/5*e^4 + 158/5*e^3 + 741/5*e^2 - 76/5*e - 97, -7/5*e^5 - 12/5*e^4 + 64/5*e^3 + 88/5*e^2 - 78/5*e - 26, 9*e^5 + 30*e^4 - 55*e^3 - 174*e^2 + 85*e + 120, 31/5*e^5 + 106/5*e^4 - 167/5*e^3 - 554/5*e^2 + 209/5*e + 46, 10*e^5 + 37*e^4 - 52*e^3 - 213*e^2 + 46*e + 133, 44/5*e^5 + 149/5*e^4 - 268/5*e^3 - 851/5*e^2 + 406/5*e + 107, 19/5*e^5 + 74/5*e^4 - 83/5*e^3 - 406/5*e^2 + 16/5*e + 32, -42/5*e^5 - 147/5*e^4 + 234/5*e^3 + 818/5*e^2 - 268/5*e - 84, 28/5*e^5 + 98/5*e^4 - 146/5*e^3 - 517/5*e^2 + 152/5*e + 21, e^4 + 6*e^3 + 2*e^2 - 28*e - 27, 3*e^5 + 10*e^4 - 19*e^3 - 58*e^2 + 30*e + 18, -42/5*e^5 - 132/5*e^4 + 279/5*e^3 + 718/5*e^2 - 573/5*e - 68, 2*e^5 + 7*e^4 - 12*e^3 - 46*e^2 + 18*e + 68, -27/5*e^5 - 92/5*e^4 + 164/5*e^3 + 538/5*e^2 - 243/5*e - 66, -8/5*e^5 - 13/5*e^4 + 66/5*e^3 + 22/5*e^2 - 212/5*e + 21, -14/5*e^5 - 54/5*e^4 + 78/5*e^3 + 321/5*e^2 - 136/5*e - 62, 16/5*e^5 + 46/5*e^4 - 102/5*e^3 - 264/5*e^2 + 134/5*e + 58, -18/5*e^5 - 58/5*e^4 + 106/5*e^3 + 307/5*e^2 - 132/5*e - 47, 3/5*e^5 + 18/5*e^4 - 16/5*e^3 - 142/5*e^2 - 33/5*e + 26, -22/5*e^5 - 57/5*e^4 + 174/5*e^3 + 348/5*e^2 - 318/5*e - 53, -2/5*e^5 - 7/5*e^4 + 4/5*e^3 + 48/5*e^2 + 62/5*e - 23, 3/5*e^5 + 8/5*e^4 - 41/5*e^3 - 72/5*e^2 + 177/5*e + 4, 24/5*e^5 + 104/5*e^4 - 98/5*e^3 - 606/5*e^2 + 46/5*e + 92, 31/5*e^5 + 106/5*e^4 - 157/5*e^3 - 564/5*e^2 + 109/5*e + 38, 18/5*e^5 + 58/5*e^4 - 111/5*e^3 - 312/5*e^2 + 197/5*e + 14, 19/5*e^5 + 74/5*e^4 - 73/5*e^3 - 376/5*e^2 + 11/5*e + 22, 4*e^5 + 14*e^4 - 19*e^3 - 74*e^2 + 22*e + 50, 14/5*e^5 + 49/5*e^4 - 68/5*e^3 - 256/5*e^2 - 24/5*e - 1, 26/5*e^5 + 91/5*e^4 - 142/5*e^3 - 494/5*e^2 + 174/5*e + 45, -14/5*e^5 - 54/5*e^4 + 98/5*e^3 + 346/5*e^2 - 206/5*e - 45, 2/5*e^5 + 22/5*e^4 + 41/5*e^3 - 148/5*e^2 - 267/5*e + 28, 8/5*e^5 + 28/5*e^4 - 36/5*e^3 - 152/5*e^2 + 22/5*e + 14, -3*e^5 - 10*e^4 + 23*e^3 + 56*e^2 - 66*e - 30, 18/5*e^5 + 43/5*e^4 - 166/5*e^3 - 262/5*e^2 + 392/5*e + 19, -22/5*e^5 - 57/5*e^4 + 144/5*e^3 + 263/5*e^2 - 208/5*e + 4, 16/5*e^5 + 56/5*e^4 - 92/5*e^3 - 334/5*e^2 + 84/5*e + 56, -2*e^5 - 4*e^4 + 12*e^3 + 14*e^2 - 5*e - 2, 48/5*e^5 + 178/5*e^4 - 241/5*e^3 - 1012/5*e^2 + 167/5*e + 124, 16/5*e^5 + 51/5*e^4 - 102/5*e^3 - 259/5*e^2 + 224/5*e + 3, 9/5*e^5 + 34/5*e^4 - 28/5*e^3 - 196/5*e^2 - 74/5*e + 32, -8*e^5 - 27*e^4 + 44*e^3 + 140*e^2 - 66*e - 55, 36/5*e^5 + 116/5*e^4 - 252/5*e^3 - 659/5*e^2 + 514/5*e + 48, 6*e^5 + 18*e^4 - 46*e^3 - 108*e^2 + 101*e + 70, 2/5*e^5 + 2/5*e^4 - 24/5*e^3 - 18/5*e^2 + 38/5*e + 3, 6*e^5 + 22*e^4 - 31*e^3 - 126*e^2 + 32*e + 70, -26/5*e^5 - 81/5*e^4 + 192/5*e^3 + 494/5*e^2 - 424/5*e - 63, -e^5 + 12*e^3 - 8*e^2 - 29*e + 38, 10*e^5 + 34*e^4 - 56*e^3 - 184*e^2 + 70*e + 78, -64/5*e^5 - 224/5*e^4 + 318/5*e^3 + 1186/5*e^2 - 266/5*e - 102, 14/5*e^5 + 39/5*e^4 - 88/5*e^3 - 216/5*e^2 + 126/5*e + 57, -48/5*e^5 - 163/5*e^4 + 236/5*e^3 + 832/5*e^2 - 162/5*e - 54, -38/5*e^5 - 133/5*e^4 + 196/5*e^3 + 752/5*e^2 - 122/5*e - 99, 6/5*e^5 + 16/5*e^4 - 32/5*e^3 - 54/5*e^2 + 4/5*e - 40, 7*e^5 + 22*e^4 - 48*e^3 - 132*e^2 + 84*e + 92, 8/5*e^5 + 18/5*e^4 - 96/5*e^3 - 132/5*e^2 + 307/5*e + 6, 19/5*e^5 + 54/5*e^4 - 113/5*e^3 - 236/5*e^2 + 146/5*e, 18/5*e^5 + 53/5*e^4 - 116/5*e^3 - 272/5*e^2 + 142/5*e + 17, -2*e^5 - 11*e^4 + 6*e^3 + 70*e^2 - 8*e - 87, -8*e^5 - 30*e^4 + 40*e^3 + 173*e^2 - 20*e - 112] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal([49,7,w^3 + w^2 - 4*w - 1])] = -1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]