# Properties

 Label 4.4.4400.1-20.2-b Base field 4.4.4400.1 Weight $[2, 2, 2, 2]$ Level norm $20$ Level $[20,10,-w^{2} + w + 5]$ Dimension $2$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.4400.1

Generator $$w$$, with minimal polynomial $$x^{4} - 7x^{2} + 11$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[20,10,-w^{2} + w + 5]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $4$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} + x - 8$$
Norm Prime Eigenvalue
4 $[4, 2, -w^{2} + w + 3]$ $\phantom{-}1$
5 $[5, 5, w + 1]$ $\phantom{-}e$
5 $[5, 5, -w^{3} + w^{2} + 4w - 4]$ $\phantom{-}1$
11 $[11, 11, w]$ $-e + 1$
29 $[29, 29, w^{3} - 2w^{2} - 3w + 7]$ $-3e - 3$
29 $[29, 29, -w^{3} - 2w^{2} + 3w + 7]$ $\phantom{-}e + 7$
31 $[31, 31, -w^{3} + w^{2} + 4w - 2]$ $\phantom{-}2e + 3$
31 $[31, 31, -w^{3} - w^{2} + 4w + 2]$ $-2$
41 $[41, 41, w^{3} + 2w^{2} - 4w - 6]$ $\phantom{-}8$
41 $[41, 41, w^{3} - 5w + 2]$ $\phantom{-}2e - 4$
49 $[49, 7, -w^{3} + w^{2} + 4w - 1]$ $-1$
49 $[49, 7, w^{3} + w^{2} - 4w - 1]$ $-2e - 6$
59 $[59, 59, -3w^{2} - w + 10]$ $\phantom{-}e + 3$
59 $[59, 59, -3w^{2} + w + 10]$ $-e - 2$
61 $[61, 61, -2w^{3} + 2w^{2} + 7w - 5]$ $-3e - 5$
61 $[61, 61, 2w^{3} + w^{2} - 8w - 6]$ $-e$
71 $[71, 71, 2w^{2} + w - 9]$ $\phantom{-}4$
71 $[71, 71, 2w^{2} - w - 9]$ $\phantom{-}2e + 9$
81 $[81, 3, -3]$ $-2e - 8$
101 $[101, 101, 2w^{2} - w - 10]$ $-e + 6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,-w^{2} - w + 3]$ $-1$
$5$ $[5,5,-w + 1]$ $-1$