# Properties

 Label 4.4.4225.1-36.2-b Base field $$\Q(\sqrt{5}, \sqrt{13})$$ Weight $[2, 2, 2, 2]$ Level norm $36$ Level $[36,6,-\frac{1}{2}w^{2} + \frac{1}{2}w + 5]$ Dimension $1$ CM no Base change no

# Related objects

## Base field $$\Q(\sqrt{5}, \sqrt{13})$$

Generator $$w$$, with minimal polynomial $$x^{4} - 9x^{2} + 4$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[36,6,-\frac{1}{2}w^{2} + \frac{1}{2}w + 5]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $7$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, w]$ $\phantom{-}1$
4 $[4, 2, -\frac{1}{2}w^{3} + \frac{9}{2}w]$ $-3$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w - \frac{1}{2}]$ $-2$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w + \frac{1}{2}]$ $-1$
25 $[25, 5, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $-6$
29 $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $\phantom{-}2$
29 $[29, 29, -\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $\phantom{-}2$
29 $[29, 29, -\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $-6$
29 $[29, 29, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{9}{4}w + \frac{1}{2}]$ $-6$
49 $[49, 7, \frac{3}{4}w^{3} + \frac{1}{2}w^{2} - \frac{23}{4}w - \frac{3}{2}]$ $\phantom{-}2$
49 $[49, 7, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 3w - 3]$ $\phantom{-}10$
61 $[61, 61, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 5w - 1]$ $\phantom{-}2$
61 $[61, 61, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{13}{4}w + \frac{7}{2}]$ $-14$
61 $[61, 61, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{13}{4}w - \frac{7}{2}]$ $\phantom{-}10$
61 $[61, 61, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 5w - 1]$ $\phantom{-}2$
79 $[79, 79, \frac{3}{4}w^{3} - \frac{25}{4}w - \frac{9}{2}]$ $-16$
79 $[79, 79, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{3}{4}w - \frac{3}{2}]$ $\phantom{-}0$
79 $[79, 79, \frac{1}{4}w^{3} - \frac{3}{4}w - \frac{9}{2}]$ $\phantom{-}0$
79 $[79, 79, \frac{3}{2}w^{3} + \frac{1}{2}w^{2} - 13w - 3]$ $\phantom{-}0$
101 $[101, 101, \frac{1}{4}w^{3} + w^{2} - \frac{7}{4}w - \frac{5}{2}]$ $-10$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,-w]$ $-1$
$9$ $[9,3,-\frac{1}{4}w^{3} + \frac{11}{4}w - \frac{1}{2}]$ $1$