Properties

 Label 4.4.4225.1-29.1-c Base field $$\Q(\sqrt{5}, \sqrt{13})$$ Weight $[2, 2, 2, 2]$ Level norm $29$ Level $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ Dimension $1$ CM no Base change no

Related objects

Base field $$\Q(\sqrt{5}, \sqrt{13})$$

Generator $$w$$, with minimal polynomial $$x^{4} - 9x^{2} + 4$$; narrow class number $$1$$ and class number $$1$$.

Form

 Weight: $[2, 2, 2, 2]$ Level: $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $5$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, w]$ $\phantom{-}3$
4 $[4, 2, -\frac{1}{2}w^{3} + \frac{9}{2}w]$ $-2$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w - \frac{1}{2}]$ $\phantom{-}1$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w + \frac{1}{2}]$ $-3$
25 $[25, 5, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $-1$
29 $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $-1$
29 $[29, 29, -\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $-1$
29 $[29, 29, -\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $\phantom{-}6$
29 $[29, 29, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{9}{4}w + \frac{1}{2}]$ $\phantom{-}5$
49 $[49, 7, \frac{3}{4}w^{3} + \frac{1}{2}w^{2} - \frac{23}{4}w - \frac{3}{2}]$ $\phantom{-}11$
49 $[49, 7, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 3w - 3]$ $\phantom{-}4$
61 $[61, 61, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 5w - 1]$ $\phantom{-}15$
61 $[61, 61, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{13}{4}w + \frac{7}{2}]$ $-4$
61 $[61, 61, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{13}{4}w - \frac{7}{2}]$ $-4$
61 $[61, 61, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 5w - 1]$ $\phantom{-}4$
79 $[79, 79, \frac{3}{4}w^{3} - \frac{25}{4}w - \frac{9}{2}]$ $\phantom{-}2$
79 $[79, 79, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{3}{4}w - \frac{3}{2}]$ $-14$
79 $[79, 79, \frac{1}{4}w^{3} - \frac{3}{4}w - \frac{9}{2}]$ $\phantom{-}15$
79 $[79, 79, \frac{3}{2}w^{3} + \frac{1}{2}w^{2} - 13w - 3]$ $-4$
101 $[101, 101, \frac{1}{4}w^{3} + w^{2} - \frac{7}{4}w - \frac{5}{2}]$ $\phantom{-}8$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$29$ $[29,29,-\frac{1}{4}w^{3}+\frac{1}{2}w^{2}+\frac{9}{4}w-\frac{1}{2}]$ $1$