Properties

Label 4.4.4225.1-16.1-c
Base field \(\Q(\sqrt{5}, \sqrt{13})\)
Weight $[2, 2, 2, 2]$
Level norm $16$
Level $[16, 2, 2]$
Dimension $2$
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{5}, \sqrt{13})\)

Generator \(w\), with minimal polynomial \(x^{4} - 9x^{2} + 4\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[16, 2, 2]$
Dimension: $2$
CM: no
Base change: yes
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} - 5x - 2\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, w]$ $\phantom{-}1$
4 $[4, 2, -\frac{1}{2}w^{3} + \frac{9}{2}w]$ $\phantom{-}1$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w - \frac{1}{2}]$ $\phantom{-}e$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w + \frac{1}{2}]$ $\phantom{-}e$
25 $[25, 5, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $-3e + 8$
29 $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $-2e + 2$
29 $[29, 29, -\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $-2e + 2$
29 $[29, 29, -\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $-2e + 2$
29 $[29, 29, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{9}{4}w + \frac{1}{2}]$ $-2e + 2$
49 $[49, 7, \frac{3}{4}w^{3} + \frac{1}{2}w^{2} - \frac{23}{4}w - \frac{3}{2}]$ $\phantom{-}e - 8$
49 $[49, 7, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 3w - 3]$ $\phantom{-}e - 8$
61 $[61, 61, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 5w - 1]$ $\phantom{-}2e - 6$
61 $[61, 61, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{13}{4}w + \frac{7}{2}]$ $\phantom{-}2e - 6$
61 $[61, 61, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{13}{4}w - \frac{7}{2}]$ $\phantom{-}2e - 6$
61 $[61, 61, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 5w - 1]$ $\phantom{-}2e - 6$
79 $[79, 79, \frac{3}{4}w^{3} - \frac{25}{4}w - \frac{9}{2}]$ $-2e + 4$
79 $[79, 79, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{3}{4}w - \frac{3}{2}]$ $-2e + 4$
79 $[79, 79, \frac{1}{4}w^{3} - \frac{3}{4}w - \frac{9}{2}]$ $-2e + 4$
79 $[79, 79, \frac{3}{2}w^{3} + \frac{1}{2}w^{2} - 13w - 3]$ $-2e + 4$
101 $[101, 101, \frac{1}{4}w^{3} + w^{2} - \frac{7}{4}w - \frac{5}{2}]$ $\phantom{-}2e - 14$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,w]$ $-1$
$4$ $[4,2,-\frac{1}{2}w^{3}+\frac{9}{2}w]$ $-1$