# Properties

 Label 4.4.4225.1-16.1-c Base field $$\Q(\sqrt{5}, \sqrt{13})$$ Weight $[2, 2, 2, 2]$ Level norm $16$ Level $[16, 2, 2]$ Dimension $2$ CM no Base change yes

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{5}, \sqrt{13})$$

Generator $$w$$, with minimal polynomial $$x^{4} - 9x^{2} + 4$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[16, 2, 2]$ Dimension: $2$ CM: no Base change: yes Newspace dimension: $4$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} - 5x - 2$$
Norm Prime Eigenvalue
4 $[4, 2, w]$ $\phantom{-}1$
4 $[4, 2, -\frac{1}{2}w^{3} + \frac{9}{2}w]$ $\phantom{-}1$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w - \frac{1}{2}]$ $\phantom{-}e$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w + \frac{1}{2}]$ $\phantom{-}e$
25 $[25, 5, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $-3e + 8$
29 $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $-2e + 2$
29 $[29, 29, -\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $-2e + 2$
29 $[29, 29, -\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $-2e + 2$
29 $[29, 29, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{9}{4}w + \frac{1}{2}]$ $-2e + 2$
49 $[49, 7, \frac{3}{4}w^{3} + \frac{1}{2}w^{2} - \frac{23}{4}w - \frac{3}{2}]$ $\phantom{-}e - 8$
49 $[49, 7, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 3w - 3]$ $\phantom{-}e - 8$
61 $[61, 61, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 5w - 1]$ $\phantom{-}2e - 6$
61 $[61, 61, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{13}{4}w + \frac{7}{2}]$ $\phantom{-}2e - 6$
61 $[61, 61, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{13}{4}w - \frac{7}{2}]$ $\phantom{-}2e - 6$
61 $[61, 61, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 5w - 1]$ $\phantom{-}2e - 6$
79 $[79, 79, \frac{3}{4}w^{3} - \frac{25}{4}w - \frac{9}{2}]$ $-2e + 4$
79 $[79, 79, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{3}{4}w - \frac{3}{2}]$ $-2e + 4$
79 $[79, 79, \frac{1}{4}w^{3} - \frac{3}{4}w - \frac{9}{2}]$ $-2e + 4$
79 $[79, 79, \frac{3}{2}w^{3} + \frac{1}{2}w^{2} - 13w - 3]$ $-2e + 4$
101 $[101, 101, \frac{1}{4}w^{3} + w^{2} - \frac{7}{4}w - \frac{5}{2}]$ $\phantom{-}2e - 14$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,w]$ $-1$
$4$ $[4,2,-\frac{1}{2}w^{3}+\frac{9}{2}w]$ $-1$