Properties

 Label 4.4.4225.1-1.1-a Base field $$\Q(\sqrt{5}, \sqrt{13})$$ Weight $[2, 2, 2, 2]$ Level norm $1$ Level $[1, 1, 1]$ Dimension $1$ CM no Base change yes

Related objects

Base field $$\Q(\sqrt{5}, \sqrt{13})$$

Generator $$w$$, with minimal polynomial $$x^{4} - 9x^{2} + 4$$; narrow class number $$1$$ and class number $$1$$.

Form

 Weight: $[2, 2, 2, 2]$ Level: $[1, 1, 1]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $2$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, w]$ $\phantom{-}1$
4 $[4, 2, -\frac{1}{2}w^{3} + \frac{9}{2}w]$ $\phantom{-}1$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w - \frac{1}{2}]$ $-2$
9 $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w + \frac{1}{2}]$ $-2$
25 $[25, 5, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $\phantom{-}10$
29 $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $-6$
29 $[29, 29, -\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $-6$
29 $[29, 29, -\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $-6$
29 $[29, 29, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{9}{4}w + \frac{1}{2}]$ $-6$
49 $[49, 7, \frac{3}{4}w^{3} + \frac{1}{2}w^{2} - \frac{23}{4}w - \frac{3}{2}]$ $\phantom{-}2$
49 $[49, 7, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 3w - 3]$ $\phantom{-}2$
61 $[61, 61, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 5w - 1]$ $\phantom{-}10$
61 $[61, 61, -\frac{1}{4}w^{3} - \frac{1}{2}w^{2} + \frac{13}{4}w + \frac{7}{2}]$ $\phantom{-}10$
61 $[61, 61, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{13}{4}w - \frac{7}{2}]$ $\phantom{-}10$
61 $[61, 61, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 5w - 1]$ $\phantom{-}10$
79 $[79, 79, \frac{3}{4}w^{3} - \frac{25}{4}w - \frac{9}{2}]$ $-8$
79 $[79, 79, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{3}{4}w - \frac{3}{2}]$ $-8$
79 $[79, 79, \frac{1}{4}w^{3} - \frac{3}{4}w - \frac{9}{2}]$ $-8$
79 $[79, 79, \frac{3}{2}w^{3} + \frac{1}{2}w^{2} - 13w - 3]$ $-8$
101 $[101, 101, \frac{1}{4}w^{3} + w^{2} - \frac{7}{4}w - \frac{5}{2}]$ $\phantom{-}6$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is $$(1)$$.