# Properties

 Base field 4.4.4205.1 Weight [2, 2, 2, 2] Level norm 49 Level $[49, 7, -w^{3} + w^{2} + 6w]$ Label 4.4.4205.1-49.2-d Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.4205.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 5x^{2} - x + 1$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2] Level $[49, 7, -w^{3} + w^{2} + 6w]$ Label 4.4.4205.1-49.2-d Dimension 2 Is CM no Is base change no Parent newspace dimension 11

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2}$$ $$\mathstrut -\mathstrut 4x$$ $$\mathstrut -\mathstrut 14$$
Norm Prime Eigenvalue
5 $[5, 5, -w^{3} + w^{2} + 5w]$ $\phantom{-}0$
7 $[7, 7, -w^{3} + 2w^{2} + 3w - 3]$ $\phantom{-}1$
7 $[7, 7, w^{3} - 2w^{2} - 3w]$ $\phantom{-}1$
13 $[13, 13, -w^{2} + w + 3]$ $\phantom{-}e$
13 $[13, 13, -w^{2} + w + 2]$ $-e + 4$
16 $[16, 2, 2]$ $-1$
23 $[23, 23, -w^{2} + 3w + 1]$ $-e + 2$
23 $[23, 23, -2w^{3} + 3w^{2} + 9w - 2]$ $\phantom{-}e - 2$
25 $[25, 5, w^{3} - 2w^{2} - 2w + 2]$ $\phantom{-}2$
49 $[49, 7, w^{3} - w^{2} - 6w - 1]$ $-4$
53 $[53, 53, 2w^{3} - 2w^{2} - 8w - 3]$ $\phantom{-}6$
53 $[53, 53, 2w^{3} - 2w^{2} - 8w - 1]$ $\phantom{-}6$
67 $[67, 67, 2w^{3} - 4w^{2} - 7w + 2]$ $\phantom{-}e + 6$
67 $[67, 67, -2w^{3} + 4w^{2} + 6w - 1]$ $-e + 10$
81 $[81, 3, -3]$ $\phantom{-}4$
83 $[83, 83, 2w^{3} - 3w^{2} - 6w - 1]$ $\phantom{-}12$
83 $[83, 83, 3w^{3} - 4w^{2} - 12w + 1]$ $\phantom{-}12$
103 $[103, 103, 3w^{3} - 4w^{2} - 12w - 1]$ $-3e + 2$
103 $[103, 103, 2w^{3} - 3w^{2} - 6w + 1]$ $\phantom{-}3e - 10$
107 $[107, 107, w^{3} - w^{2} - 3w - 3]$ $-2e - 2$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
7 $[7, 7, -w^{3} + 2w^{2} + 3w - 3]$ $-1$
7 $[7, 7, w^{3} - 2w^{2} - 3w]$ $-1$