Properties

Base field 4.4.4205.1
Weight [2, 2, 2, 2]
Level norm 25
Level $[25, 5, w^{3} - 2w^{2} - 2w + 2]$
Label 4.4.4205.1-25.2-c
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.4205.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 5x^{2} - x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[25, 5, w^{3} - 2w^{2} - 2w + 2]$
Label 4.4.4205.1-25.2-c
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 7

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
5 $[5, 5, -w^{3} + w^{2} + 5w]$ $\phantom{-}0$
7 $[7, 7, -w^{3} + 2w^{2} + 3w - 3]$ $\phantom{-}2$
7 $[7, 7, w^{3} - 2w^{2} - 3w]$ $-4$
13 $[13, 13, -w^{2} + w + 3]$ $-4$
13 $[13, 13, -w^{2} + w + 2]$ $\phantom{-}2$
16 $[16, 2, 2]$ $-1$
23 $[23, 23, -w^{2} + 3w + 1]$ $-6$
23 $[23, 23, -2w^{3} + 3w^{2} + 9w - 2]$ $-6$
25 $[25, 5, w^{3} - 2w^{2} - 2w + 2]$ $\phantom{-}1$
49 $[49, 7, w^{3} - w^{2} - 6w - 1]$ $\phantom{-}2$
53 $[53, 53, 2w^{3} - 2w^{2} - 8w - 3]$ $\phantom{-}0$
53 $[53, 53, 2w^{3} - 2w^{2} - 8w - 1]$ $-6$
67 $[67, 67, 2w^{3} - 4w^{2} - 7w + 2]$ $-16$
67 $[67, 67, -2w^{3} + 4w^{2} + 6w - 1]$ $-4$
81 $[81, 3, -3]$ $-2$
83 $[83, 83, 2w^{3} - 3w^{2} - 6w - 1]$ $\phantom{-}6$
83 $[83, 83, 3w^{3} - 4w^{2} - 12w + 1]$ $\phantom{-}0$
103 $[103, 103, 3w^{3} - 4w^{2} - 12w - 1]$ $-4$
103 $[103, 103, 2w^{3} - 3w^{2} - 6w + 1]$ $-4$
107 $[107, 107, w^{3} - w^{2} - 3w - 3]$ $\phantom{-}12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
25 $[25, 5, w^{3} - 2w^{2} - 2w + 2]$ $-1$