Properties

Base field 4.4.2624.1
Weight [2, 2, 2, 2]
Level norm 28
Level $[28, 14, -w^{3} + 2w^{2} + 4w - 3]$
Label 4.4.2624.1-28.1-a
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.2624.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 3x^{2} + 2x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[28, 14, -w^{3} + 2w^{2} + 4w - 3]$
Label 4.4.2624.1-28.1-a
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 2

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, w^{3} - 2w^{2} - 2w + 1]$ $-1$
7 $[7, 7, -w^{3} + 3w^{2} + w - 3]$ $-1$
7 $[7, 7, -w^{2} + w + 2]$ $\phantom{-}3$
17 $[17, 17, -w^{3} + 3w^{2} - 3]$ $\phantom{-}4$
17 $[17, 17, -w^{3} + w^{2} + 4w]$ $\phantom{-}4$
25 $[25, 5, -w^{3} + 3w^{2} + 2w - 2]$ $-4$
25 $[25, 5, -2w^{3} + 4w^{2} + 5w - 1]$ $\phantom{-}7$
41 $[41, 41, -w^{3} + 2w^{2} + 4w - 2]$ $\phantom{-}3$
47 $[47, 47, -2w^{3} + 5w^{2} + 4w - 4]$ $-2$
47 $[47, 47, 2w^{3} - 4w^{2} - 5w]$ $\phantom{-}9$
49 $[49, 7, w^{2} - 4w - 1]$ $-12$
71 $[71, 71, 2w - 3]$ $-15$
71 $[71, 71, -w^{3} + w^{2} + 6w - 2]$ $-4$
73 $[73, 73, -w^{3} + 3w^{2} + 3w - 5]$ $-7$
73 $[73, 73, 2w^{3} - 5w^{2} - 5w + 4]$ $-7$
73 $[73, 73, -w^{3} + 3w^{2} - 5]$ $\phantom{-}5$
73 $[73, 73, w^{3} - w^{2} - 4w + 2]$ $-6$
79 $[79, 79, 2w^{3} - 3w^{2} - 6w + 2]$ $-1$
79 $[79, 79, 2w^{3} - 3w^{2} - 5w]$ $\phantom{-}10$
81 $[81, 3, -3]$ $-5$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, w^{3} - 2w^{2} - 2w + 1]$ $1$
7 $[7, 7, -w^{3} + 3w^{2} + w - 3]$ $1$