# Properties

 Base field $$\Q(\sqrt{5}, \sqrt{7})$$ Weight [2, 2, 2, 2] Level norm 25 Level $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ Label 4.4.19600.1-25.1-m Dimension 4 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{5}, \sqrt{7})$$

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 15x^{2} + 16x + 29$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2] Level $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ Label 4.4.19600.1-25.1-m Dimension 4 Is CM no Is base change no Parent newspace dimension 62

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{4}$$ $$\mathstrut -\mathstrut 4x^{3}$$ $$\mathstrut -\mathstrut 66x^{2}$$ $$\mathstrut +\mathstrut 140x$$ $$\mathstrut +\mathstrut 73$$
Norm Prime Eigenvalue
4 $[4, 2, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{1}{23}]$ $\phantom{-}2$
9 $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w + \frac{24}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{1}{8}e^{2} - \frac{27}{8}e + \frac{107}{24}$
9 $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w - \frac{68}{23}]$ $-\frac{1}{24}e^{3} + \frac{1}{8}e^{2} + \frac{27}{8}e - \frac{59}{24}$
19 $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{24}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{1}{8}e^{2} - \frac{19}{8}e + \frac{59}{24}$
19 $[19, 19, -\frac{6}{23}w^{3} + \frac{9}{23}w^{2} + \frac{83}{23}w - \frac{20}{23}]$ $-\frac{1}{24}e^{3} + \frac{1}{8}e^{2} + \frac{19}{8}e - \frac{59}{24}$
19 $[19, 19, \frac{6}{23}w^{3} - \frac{9}{23}w^{2} - \frac{83}{23}w + \frac{66}{23}]$ $-\frac{1}{24}e^{3} + \frac{1}{8}e^{2} + \frac{19}{8}e - \frac{59}{24}$
19 $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w - \frac{22}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{1}{8}e^{2} - \frac{19}{8}e + \frac{59}{24}$
25 $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $-1$
29 $[29, 29, w]$ $\phantom{-}5$
29 $[29, 29, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{63}{23}w - \frac{21}{23}]$ $\phantom{-}5$
29 $[29, 29, \frac{4}{23}w^{3} - \frac{6}{23}w^{2} - \frac{63}{23}w + \frac{44}{23}]$ $\phantom{-}5$
29 $[29, 29, -w + 1]$ $\phantom{-}5$
31 $[31, 31, w + 2]$ $-\frac{1}{24}e^{3} - \frac{1}{24}e^{2} + \frac{65}{24}e + \frac{27}{8}$
31 $[31, 31, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{63}{23}w + \frac{25}{23}]$ $\phantom{-}\frac{1}{24}e^{3} + \frac{1}{24}e^{2} - \frac{65}{24}e - \frac{27}{8}$
31 $[31, 31, \frac{4}{23}w^{3} - \frac{6}{23}w^{2} - \frac{63}{23}w + \frac{90}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{7}{24}e^{2} - \frac{49}{24}e + \frac{199}{24}$
31 $[31, 31, -w + 3]$ $-\frac{1}{24}e^{3} + \frac{7}{24}e^{2} + \frac{49}{24}e - \frac{199}{24}$
49 $[49, 7, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w - \frac{22}{23}]$ $\phantom{-}6$
59 $[59, 59, -\frac{20}{23}w^{3} + \frac{30}{23}w^{2} + \frac{269}{23}w - \frac{128}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{5}{24}e^{2} - \frac{53}{24}e + \frac{43}{8}$
59 $[59, 59, -\frac{8}{23}w^{3} + \frac{12}{23}w^{2} + \frac{103}{23}w - \frac{88}{23}]$ $-\frac{1}{24}e^{3} + \frac{5}{24}e^{2} + \frac{53}{24}e - \frac{43}{8}$
59 $[59, 59, -\frac{8}{23}w^{3} + \frac{12}{23}w^{2} + \frac{103}{23}w - \frac{19}{23}]$ $-\frac{1}{24}e^{3} + \frac{1}{24}e^{2} + \frac{61}{24}e + \frac{11}{24}$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
25 $[25,5,-\frac{4}{23}w^{3}+\frac{6}{23}w^{2}+\frac{40}{23}w-\frac{21}{23}]$ $1$