Properties

 Label 4.4.19600.1-25.1-m Base field $$\Q(\sqrt{5}, \sqrt{7})$$ Weight $[2, 2, 2, 2]$ Level norm $25$ Level $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ Dimension $4$ CM no Base change no

Related objects

• L-function not available

Base field $$\Q(\sqrt{5}, \sqrt{7})$$

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 15x^{2} + 16x + 29$$; narrow class number $$2$$ and class number $$1$$.

Form

 Weight: $[2, 2, 2, 2]$ Level: $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ Dimension: $4$ CM: no Base change: no Newspace dimension: $62$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{4} - 4x^{3} - 66x^{2} + 140x + 73$$
Norm Prime Eigenvalue
4 $[4, 2, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{1}{23}]$ $\phantom{-}2$
9 $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w + \frac{24}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{1}{8}e^{2} - \frac{27}{8}e + \frac{107}{24}$
9 $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w - \frac{68}{23}]$ $-\frac{1}{24}e^{3} + \frac{1}{8}e^{2} + \frac{27}{8}e - \frac{59}{24}$
19 $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{24}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{1}{8}e^{2} - \frac{19}{8}e + \frac{59}{24}$
19 $[19, 19, -\frac{6}{23}w^{3} + \frac{9}{23}w^{2} + \frac{83}{23}w - \frac{20}{23}]$ $-\frac{1}{24}e^{3} + \frac{1}{8}e^{2} + \frac{19}{8}e - \frac{59}{24}$
19 $[19, 19, \frac{6}{23}w^{3} - \frac{9}{23}w^{2} - \frac{83}{23}w + \frac{66}{23}]$ $-\frac{1}{24}e^{3} + \frac{1}{8}e^{2} + \frac{19}{8}e - \frac{59}{24}$
19 $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w - \frac{22}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{1}{8}e^{2} - \frac{19}{8}e + \frac{59}{24}$
25 $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $-1$
29 $[29, 29, w]$ $\phantom{-}5$
29 $[29, 29, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{63}{23}w - \frac{21}{23}]$ $\phantom{-}5$
29 $[29, 29, \frac{4}{23}w^{3} - \frac{6}{23}w^{2} - \frac{63}{23}w + \frac{44}{23}]$ $\phantom{-}5$
29 $[29, 29, -w + 1]$ $\phantom{-}5$
31 $[31, 31, w + 2]$ $-\frac{1}{24}e^{3} - \frac{1}{24}e^{2} + \frac{65}{24}e + \frac{27}{8}$
31 $[31, 31, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{63}{23}w + \frac{25}{23}]$ $\phantom{-}\frac{1}{24}e^{3} + \frac{1}{24}e^{2} - \frac{65}{24}e - \frac{27}{8}$
31 $[31, 31, \frac{4}{23}w^{3} - \frac{6}{23}w^{2} - \frac{63}{23}w + \frac{90}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{7}{24}e^{2} - \frac{49}{24}e + \frac{199}{24}$
31 $[31, 31, -w + 3]$ $-\frac{1}{24}e^{3} + \frac{7}{24}e^{2} + \frac{49}{24}e - \frac{199}{24}$
49 $[49, 7, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w - \frac{22}{23}]$ $\phantom{-}6$
59 $[59, 59, -\frac{20}{23}w^{3} + \frac{30}{23}w^{2} + \frac{269}{23}w - \frac{128}{23}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{5}{24}e^{2} - \frac{53}{24}e + \frac{43}{8}$
59 $[59, 59, -\frac{8}{23}w^{3} + \frac{12}{23}w^{2} + \frac{103}{23}w - \frac{88}{23}]$ $-\frac{1}{24}e^{3} + \frac{5}{24}e^{2} + \frac{53}{24}e - \frac{43}{8}$
59 $[59, 59, -\frac{8}{23}w^{3} + \frac{12}{23}w^{2} + \frac{103}{23}w - \frac{19}{23}]$ $-\frac{1}{24}e^{3} + \frac{1}{24}e^{2} + \frac{61}{24}e + \frac{11}{24}$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$25$ $[25,5,-\frac{4}{23}w^{3}+\frac{6}{23}w^{2}+\frac{40}{23}w-\frac{21}{23}]$ $1$