Properties

Base field \(\Q(\sqrt{5}, \sqrt{7})\)
Weight [2, 2, 2, 2]
Level norm 19
Level $[19,19,\frac{6}{23}w^{3} - \frac{9}{23}w^{2} - \frac{83}{23}w + \frac{66}{23}]$
Label 4.4.19600.1-19.3-b
Dimension 20
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{5}, \sqrt{7})\)

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 15x^{2} + 16x + 29\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[19,19,\frac{6}{23}w^{3} - \frac{9}{23}w^{2} - \frac{83}{23}w + \frac{66}{23}]$
Label 4.4.19600.1-19.3-b
Dimension 20
Is CM no
Is base change no
Parent newspace dimension 40

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{20} \) \(\mathstrut +\mathstrut 4x^{19} \) \(\mathstrut -\mathstrut 33x^{18} \) \(\mathstrut -\mathstrut 130x^{17} \) \(\mathstrut +\mathstrut 447x^{16} \) \(\mathstrut +\mathstrut 1669x^{15} \) \(\mathstrut -\mathstrut 3326x^{14} \) \(\mathstrut -\mathstrut 10888x^{13} \) \(\mathstrut +\mathstrut 15487x^{12} \) \(\mathstrut +\mathstrut 38604x^{11} \) \(\mathstrut -\mathstrut 47385x^{10} \) \(\mathstrut -\mathstrut 71872x^{9} \) \(\mathstrut +\mathstrut 91709x^{8} \) \(\mathstrut +\mathstrut 56127x^{7} \) \(\mathstrut -\mathstrut 97476x^{6} \) \(\mathstrut +\mathstrut 5121x^{5} \) \(\mathstrut +\mathstrut 39385x^{4} \) \(\mathstrut -\mathstrut 20842x^{3} \) \(\mathstrut +\mathstrut 3795x^{2} \) \(\mathstrut -\mathstrut 92x \) \(\mathstrut -\mathstrut 28\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{1}{23}]$ $\phantom{-}e$
9 $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w + \frac{24}{23}]$ $...$
9 $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w - \frac{68}{23}]$ $...$
19 $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{24}{23}]$ $...$
19 $[19, 19, -\frac{6}{23}w^{3} + \frac{9}{23}w^{2} + \frac{83}{23}w - \frac{20}{23}]$ $...$
19 $[19, 19, \frac{6}{23}w^{3} - \frac{9}{23}w^{2} - \frac{83}{23}w + \frac{66}{23}]$ $\phantom{-}1$
19 $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w - \frac{22}{23}]$ $...$
25 $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $...$
29 $[29, 29, w]$ $...$
29 $[29, 29, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{63}{23}w - \frac{21}{23}]$ $...$
29 $[29, 29, \frac{4}{23}w^{3} - \frac{6}{23}w^{2} - \frac{63}{23}w + \frac{44}{23}]$ $...$
29 $[29, 29, -w + 1]$ $...$
31 $[31, 31, w + 2]$ $...$
31 $[31, 31, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{63}{23}w + \frac{25}{23}]$ $...$
31 $[31, 31, \frac{4}{23}w^{3} - \frac{6}{23}w^{2} - \frac{63}{23}w + \frac{90}{23}]$ $...$
31 $[31, 31, -w + 3]$ $...$
49 $[49, 7, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w - \frac{22}{23}]$ $...$
59 $[59, 59, -\frac{20}{23}w^{3} + \frac{30}{23}w^{2} + \frac{269}{23}w - \frac{128}{23}]$ $...$
59 $[59, 59, -\frac{8}{23}w^{3} + \frac{12}{23}w^{2} + \frac{103}{23}w - \frac{88}{23}]$ $...$
59 $[59, 59, -\frac{8}{23}w^{3} + \frac{12}{23}w^{2} + \frac{103}{23}w - \frac{19}{23}]$ $...$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
19 $[19,19,\frac{6}{23}w^{3} - \frac{9}{23}w^{2} - \frac{83}{23}w + \frac{66}{23}]$ $-1$