# Properties

 Label 4.4.19600.1-1.1-e Base field $$\Q(\sqrt{5}, \sqrt{7})$$ Weight $[2, 2, 2, 2]$ Level norm $1$ Level $[1, 1, 1]$ Dimension $4$ CM no Base change yes

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{5}, \sqrt{7})$$

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 15x^{2} + 16x + 29$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[1, 1, 1]$ Dimension: $4$ CM: no Base change: yes Newspace dimension: $9$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{4} - 38x^{2} + 208$$
Norm Prime Eigenvalue
4 $[4, 2, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{1}{23}]$ $\phantom{-}\frac{1}{6}e^{2} - \frac{14}{3}$
9 $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w + \frac{24}{23}]$ $\phantom{-}\frac{1}{6}e^{2} + \frac{1}{3}$
9 $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w - \frac{68}{23}]$ $\phantom{-}\frac{1}{6}e^{2} + \frac{1}{3}$
19 $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{24}{23}]$ $\phantom{-}e$
19 $[19, 19, -\frac{6}{23}w^{3} + \frac{9}{23}w^{2} + \frac{83}{23}w - \frac{20}{23}]$ $\phantom{-}e$
19 $[19, 19, \frac{6}{23}w^{3} - \frac{9}{23}w^{2} - \frac{83}{23}w + \frac{66}{23}]$ $\phantom{-}e$
19 $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w - \frac{22}{23}]$ $\phantom{-}e$
25 $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $-\frac{1}{3}e^{2} + \frac{22}{3}$
29 $[29, 29, w]$ $-\frac{1}{6}e^{2} + \frac{5}{3}$
29 $[29, 29, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{63}{23}w - \frac{21}{23}]$ $-\frac{1}{6}e^{2} + \frac{5}{3}$
29 $[29, 29, \frac{4}{23}w^{3} - \frac{6}{23}w^{2} - \frac{63}{23}w + \frac{44}{23}]$ $-\frac{1}{6}e^{2} + \frac{5}{3}$
29 $[29, 29, -w + 1]$ $-\frac{1}{6}e^{2} + \frac{5}{3}$
31 $[31, 31, w + 2]$ $-\frac{1}{6}e^{3} + \frac{11}{3}e$
31 $[31, 31, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{63}{23}w + \frac{25}{23}]$ $-\frac{1}{6}e^{3} + \frac{11}{3}e$
31 $[31, 31, \frac{4}{23}w^{3} - \frac{6}{23}w^{2} - \frac{63}{23}w + \frac{90}{23}]$ $-\frac{1}{6}e^{3} + \frac{11}{3}e$
31 $[31, 31, -w + 3]$ $-\frac{1}{6}e^{3} + \frac{11}{3}e$
49 $[49, 7, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w - \frac{22}{23}]$ $-\frac{2}{3}e^{2} + \frac{38}{3}$
59 $[59, 59, -\frac{20}{23}w^{3} + \frac{30}{23}w^{2} + \frac{269}{23}w - \frac{128}{23}]$ $\phantom{-}\frac{1}{6}e^{3} - \frac{20}{3}e$
59 $[59, 59, -\frac{8}{23}w^{3} + \frac{12}{23}w^{2} + \frac{103}{23}w - \frac{88}{23}]$ $\phantom{-}\frac{1}{6}e^{3} - \frac{20}{3}e$
59 $[59, 59, -\frac{8}{23}w^{3} + \frac{12}{23}w^{2} + \frac{103}{23}w - \frac{19}{23}]$ $\phantom{-}\frac{1}{6}e^{3} - \frac{20}{3}e$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is $$(1)$$.