# Properties

 Label 4.4.19525.1-25.2-h Base field 4.4.19525.1 Weight $[2, 2, 2, 2]$ Level norm $25$ Level $[25, 5, \frac{2}{3}w^{2} - \frac{2}{3}w - 5]$ Dimension $3$ CM no Base change no

# Related objects

• L-function not available

## Base field 4.4.19525.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 14x^{2} + 15x + 45$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[25, 5, \frac{2}{3}w^{2} - \frac{2}{3}w - 5]$ Dimension: $3$ CM: no Base change: no Newspace dimension: $46$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{3} + 9x^{2} + 24x + 19$$
Norm Prime Eigenvalue
5 $[5, 5, \frac{2}{3}w^{2} + \frac{1}{3}w - 5]$ $\phantom{-}1$
5 $[5, 5, \frac{2}{3}w^{2} - \frac{5}{3}w - 4]$ $-1$
9 $[9, 3, -w + 3]$ $-e - 2$
9 $[9, 3, w + 2]$ $\phantom{-}e$
11 $[11, 11, \frac{2}{3}w^{2} + \frac{1}{3}w - 4]$ $\phantom{-}2e^{2} + 12e + 16$
16 $[16, 2, 2]$ $-e^{2} - 8e - 14$
19 $[19, 19, \frac{1}{3}w^{3} - \frac{10}{3}w - 3]$ $\phantom{-}2e^{2} + 13e + 14$
19 $[19, 19, \frac{1}{3}w^{3} - w^{2} - \frac{7}{3}w + 6]$ $-2e^{2} - 13e - 20$
29 $[29, 29, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{8}{3}w - 2]$ $-e^{2} - 7e - 9$
29 $[29, 29, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + 1]$ $\phantom{-}3e^{2} + 19e + 19$
31 $[31, 31, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 3w + 1]$ $-3e^{2} - 15e - 9$
31 $[31, 31, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{8}{3}w - 4]$ $\phantom{-}e^{2} + 5e + 7$
49 $[49, 7, \frac{1}{3}w^{3} - \frac{10}{3}w - 1]$ $-4e^{2} - 23e - 25$
49 $[49, 7, -\frac{1}{3}w^{3} + w^{2} + \frac{7}{3}w - 4]$ $-6e^{2} - 39e - 57$
59 $[59, 59, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{5}{3}w - 11]$ $\phantom{-}6e^{2} + 44e + 65$
59 $[59, 59, -\frac{2}{3}w^{3} + \frac{5}{3}w^{2} + 5w - 13]$ $-2e - 5$
61 $[61, 61, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{2}{3}w - 9]$ $-e^{2} - 14e - 30$
61 $[61, 61, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 4w + 2]$ $\phantom{-}6e^{2} + 37e + 52$
61 $[61, 61, \frac{2}{3}w^{2} - \frac{5}{3}w - 1]$ $-2e^{2} - 15e - 28$
61 $[61, 61, -\frac{1}{3}w^{2} + \frac{4}{3}w + 6]$ $-e^{2} - 2e + 6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, \frac{2}{3}w^{2} + \frac{1}{3}w - 5]$ $-1$
$5$ $[5, 5, \frac{2}{3}w^{2} - \frac{5}{3}w - 4]$ $1$