# Properties

 Label 4.4.19525.1-25.2-a Base field 4.4.19525.1 Weight $[2, 2, 2, 2]$ Level norm $25$ Level $[25, 5, \frac{2}{3}w^{2} - \frac{2}{3}w - 5]$ Dimension $1$ CM no Base change no

# Related objects

## Base field 4.4.19525.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 14x^{2} + 15x + 45$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[25, 5, \frac{2}{3}w^{2} - \frac{2}{3}w - 5]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $46$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
5 $[5, 5, \frac{2}{3}w^{2} + \frac{1}{3}w - 5]$ $\phantom{-}1$
5 $[5, 5, \frac{2}{3}w^{2} - \frac{5}{3}w - 4]$ $-1$
9 $[9, 3, -w + 3]$ $-4$
9 $[9, 3, w + 2]$ $-4$
11 $[11, 11, \frac{2}{3}w^{2} + \frac{1}{3}w - 4]$ $\phantom{-}0$
16 $[16, 2, 2]$ $-1$
19 $[19, 19, \frac{1}{3}w^{3} - \frac{10}{3}w - 3]$ $\phantom{-}0$
19 $[19, 19, \frac{1}{3}w^{3} - w^{2} - \frac{7}{3}w + 6]$ $\phantom{-}0$
29 $[29, 29, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{8}{3}w - 2]$ $-6$
29 $[29, 29, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + 1]$ $\phantom{-}6$
31 $[31, 31, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 3w + 1]$ $-6$
31 $[31, 31, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{8}{3}w - 4]$ $\phantom{-}6$
49 $[49, 7, \frac{1}{3}w^{3} - \frac{10}{3}w - 1]$ $\phantom{-}6$
49 $[49, 7, -\frac{1}{3}w^{3} + w^{2} + \frac{7}{3}w - 4]$ $-6$
59 $[59, 59, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{5}{3}w - 11]$ $-6$
59 $[59, 59, -\frac{2}{3}w^{3} + \frac{5}{3}w^{2} + 5w - 13]$ $-6$
61 $[61, 61, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{2}{3}w - 9]$ $\phantom{-}10$
61 $[61, 61, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 4w + 2]$ $-6$
61 $[61, 61, \frac{2}{3}w^{2} - \frac{5}{3}w - 1]$ $\phantom{-}6$
61 $[61, 61, -\frac{1}{3}w^{2} + \frac{4}{3}w + 6]$ $\phantom{-}10$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, \frac{2}{3}w^{2} + \frac{1}{3}w - 5]$ $-1$
$5$ $[5, 5, \frac{2}{3}w^{2} - \frac{5}{3}w - 4]$ $1$