Properties

Label 4.4.19525.1-19.1-d
Base field 4.4.19525.1
Weight $[2, 2, 2, 2]$
Level norm $19$
Level $[19, 19, \frac{1}{3}w^{3} - \frac{10}{3}w - 3]$
Dimension $19$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.19525.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 14x^{2} + 15x + 45\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[19, 19, \frac{1}{3}w^{3} - \frac{10}{3}w - 3]$
Dimension: $19$
CM: no
Base change: no
Newspace dimension: $40$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{19} + 6x^{18} - 34x^{17} - 264x^{16} + 266x^{15} + 4364x^{14} + 2747x^{13} - 32557x^{12} - 52997x^{11} + 95163x^{10} + 275170x^{9} + 13222x^{8} - 477317x^{7} - 358851x^{6} + 183758x^{5} + 298401x^{4} + 64537x^{3} - 36518x^{2} - 12908x + 200\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, \frac{2}{3}w^{2} + \frac{1}{3}w - 5]$ $\phantom{-}e$
5 $[5, 5, \frac{2}{3}w^{2} - \frac{5}{3}w - 4]$ $...$
9 $[9, 3, -w + 3]$ $...$
9 $[9, 3, w + 2]$ $...$
11 $[11, 11, \frac{2}{3}w^{2} + \frac{1}{3}w - 4]$ $...$
16 $[16, 2, 2]$ $...$
19 $[19, 19, \frac{1}{3}w^{3} - \frac{10}{3}w - 3]$ $\phantom{-}1$
19 $[19, 19, \frac{1}{3}w^{3} - w^{2} - \frac{7}{3}w + 6]$ $...$
29 $[29, 29, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{8}{3}w - 2]$ $...$
29 $[29, 29, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + 1]$ $...$
31 $[31, 31, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 3w + 1]$ $...$
31 $[31, 31, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + \frac{8}{3}w - 4]$ $...$
49 $[49, 7, \frac{1}{3}w^{3} - \frac{10}{3}w - 1]$ $...$
49 $[49, 7, -\frac{1}{3}w^{3} + w^{2} + \frac{7}{3}w - 4]$ $...$
59 $[59, 59, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{5}{3}w - 11]$ $...$
59 $[59, 59, -\frac{2}{3}w^{3} + \frac{5}{3}w^{2} + 5w - 13]$ $...$
61 $[61, 61, -\frac{1}{3}w^{3} + \frac{5}{3}w^{2} + \frac{2}{3}w - 9]$ $...$
61 $[61, 61, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 4w + 2]$ $...$
61 $[61, 61, \frac{2}{3}w^{2} - \frac{5}{3}w - 1]$ $...$
61 $[61, 61, -\frac{1}{3}w^{2} + \frac{4}{3}w + 6]$ $...$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$19$ $[19, 19, \frac{1}{3}w^{3} - \frac{10}{3}w - 3]$ $-1$