# Properties

 Label 4.4.19025.1-16.1-b Base field 4.4.19025.1 Weight $[2, 2, 2, 2]$ Level norm $16$ Level $[16, 2, 2]$ Dimension $4$ CM no Base change yes

# Related objects

• L-function not available

## Base field 4.4.19025.1

Generator $$w$$, with minimal polynomial $$x^{4} - 2x^{3} - 13x^{2} + 14x + 44$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[16, 2, 2]$ Dimension: $4$ CM: no Base change: yes Newspace dimension: $32$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{4} - x^{3} - 21x^{2} + 80$$
Norm Prime Eigenvalue
4 $[4, 2, w^{2} - 2w - 6]$ $\phantom{-}1$
4 $[4, 2, -w^{2} + 7]$ $\phantom{-}1$
5 $[5, 5, -\frac{1}{2}w^{3} + 2w^{2} + \frac{7}{2}w - 14]$ $-\frac{1}{4}e^{3} + \frac{5}{4}e^{2} + \frac{9}{4}e - 9$
5 $[5, 5, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 6w - 9]$ $-\frac{1}{4}e^{3} + \frac{5}{4}e^{2} + \frac{9}{4}e - 9$
11 $[11, 11, \frac{1}{2}w^{3} - 2w^{2} - \frac{5}{2}w + 11]$ $\phantom{-}e$
11 $[11, 11, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 5w - 7]$ $\phantom{-}e$
31 $[31, 31, \frac{1}{2}w^{2} + \frac{1}{2}w - 4]$ $-e^{3} + 3e^{2} + 11e - 20$
31 $[31, 31, -\frac{1}{2}w^{2} + \frac{3}{2}w + 3]$ $-e^{3} + 3e^{2} + 11e - 20$
41 $[41, 41, \frac{1}{2}w^{2} + \frac{1}{2}w - 6]$ $\phantom{-}\frac{3}{4}e^{3} - \frac{11}{4}e^{2} - \frac{35}{4}e + 15$
41 $[41, 41, 2w^{3} - \frac{15}{2}w^{2} - \frac{25}{2}w + 50]$ $-\frac{1}{2}e^{3} + \frac{3}{2}e^{2} + \frac{9}{2}e - 8$
41 $[41, 41, \frac{5}{2}w^{2} - \frac{1}{2}w - 17]$ $-\frac{1}{2}e^{3} + \frac{3}{2}e^{2} + \frac{9}{2}e - 8$
41 $[41, 41, \frac{1}{2}w^{2} - \frac{3}{2}w - 5]$ $\phantom{-}\frac{3}{4}e^{3} - \frac{11}{4}e^{2} - \frac{35}{4}e + 15$
61 $[61, 61, -\frac{1}{2}w^{3} + w^{2} + \frac{7}{2}w - 1]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{5}{2}e^{2} - \frac{5}{2}e + 16$
61 $[61, 61, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 4w - 3]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{5}{2}e^{2} - \frac{5}{2}e + 16$
71 $[71, 71, \frac{1}{2}w^{3} + w^{2} - \frac{11}{2}w - 13]$ $-e^{3} + 3e^{2} + 9e - 20$
71 $[71, 71, -\frac{1}{2}w^{3} + \frac{5}{2}w^{2} + 2w - 17]$ $-e^{3} + 3e^{2} + 9e - 20$
81 $[81, 3, -3]$ $\phantom{-}18$
89 $[89, 89, -w^{3} + \frac{3}{2}w^{2} + \frac{13}{2}w - 9]$ $-\frac{1}{4}e^{3} + \frac{1}{4}e^{2} + \frac{17}{4}e + 3$
89 $[89, 89, w^{3} - \frac{7}{2}w^{2} - \frac{11}{2}w + 20]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{5}{2}e^{2} - \frac{15}{2}e + 24$
89 $[89, 89, -w^{3} - \frac{1}{2}w^{2} + \frac{19}{2}w + 12]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{5}{2}e^{2} - \frac{15}{2}e + 24$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, w^{2} - 2w - 6]$ $-1$
$4$ $[4, 2, -w^{2} + 7]$ $-1$