Properties

Base field 4.4.18688.1
Weight [2, 2, 2, 2]
Level norm 17
Level $[17,17,\frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + \frac{11}{3}]$
Label 4.4.18688.1-17.2-b
Dimension 30
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.18688.1

Generator \(w\), with minimal polynomial \(x^{4} - 10x^{2} - 4x + 14\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[17,17,\frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + \frac{11}{3}]$
Label 4.4.18688.1-17.2-b
Dimension 30
Is CM no
Is base change no
Parent newspace dimension 48

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{30} \) \(\mathstrut -\mathstrut 45x^{28} \) \(\mathstrut +\mathstrut 900x^{26} \) \(\mathstrut -\mathstrut 10555x^{24} \) \(\mathstrut +\mathstrut 80653x^{22} \) \(\mathstrut -\mathstrut 422025x^{20} \) \(\mathstrut +\mathstrut 1547468x^{18} \) \(\mathstrut -\mathstrut 4002552x^{16} \) \(\mathstrut +\mathstrut 7260440x^{14} \) \(\mathstrut -\mathstrut 9081553x^{12} \) \(\mathstrut +\mathstrut 7614554x^{10} \) \(\mathstrut -\mathstrut 4105569x^{8} \) \(\mathstrut +\mathstrut 1339732x^{6} \) \(\mathstrut -\mathstrut 239565x^{4} \) \(\mathstrut +\mathstrut 19620x^{2} \) \(\mathstrut -\mathstrut 576\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w - 2]$ $\phantom{-}e$
7 $[7, 7, -\frac{2}{3}w^{3} + \frac{2}{3}w^{2} + 5w - \frac{7}{3}]$ $...$
7 $[7, 7, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + w - \frac{5}{3}]$ $...$
9 $[9, 3, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 3w - \frac{5}{3}]$ $...$
9 $[9, 3, w + 1]$ $...$
17 $[17, 17, w + 3]$ $...$
17 $[17, 17, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 3w - \frac{11}{3}]$ $-1$
31 $[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - w - \frac{1}{3}]$ $...$
31 $[31, 31, -\frac{2}{3}w^{3} + \frac{2}{3}w^{2} + 5w - \frac{1}{3}]$ $...$
41 $[41, 41, -\frac{2}{3}w^{3} + \frac{5}{3}w^{2} + 4w - \frac{19}{3}]$ $...$
41 $[41, 41, w^{2} - 5]$ $...$
41 $[41, 41, 2w + 3]$ $...$
41 $[41, 41, \frac{2}{3}w^{3} + \frac{4}{3}w^{2} - 5w - \frac{29}{3}]$ $...$
47 $[47, 47, -\frac{2}{3}w^{3} + \frac{5}{3}w^{2} + 3w - \frac{19}{3}]$ $...$
47 $[47, 47, \frac{1}{3}w^{3} + \frac{2}{3}w^{2} - 3w - \frac{13}{3}]$ $...$
49 $[49, 7, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 2w - \frac{11}{3}]$ $...$
73 $[73, 73, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 5w + \frac{19}{3}]$ $...$
73 $[73, 73, -\frac{2}{3}w^{3} - \frac{1}{3}w^{2} + 4w + \frac{11}{3}]$ $...$
73 $[73, 73, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + 2w - \frac{17}{3}]$ $...$
103 $[103, 103, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + w - \frac{23}{3}]$ $...$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
17 $[17,17,\frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + \frac{11}{3}]$ $1$