Properties

Base field 4.4.18688.1
Weight [2, 2, 2, 2]
Level norm 1
Level $[1, 1, 1]$
Label 4.4.18688.1-1.1-a
Dimension 1
CM yes
Base change yes

Related objects

Downloads

Learn more about

Base field 4.4.18688.1

Generator \(w\), with minimal polynomial \(x^{4} - 10x^{2} - 4x + 14\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[1, 1, 1]$
Label 4.4.18688.1-1.1-a
Dimension 1
Is CM yes
Is base change yes
Parent newspace dimension 9

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 2]$ $\phantom{-}0$
7 $[7, 7, -\frac{2}{3}w^{3} + \frac{2}{3}w^{2} + 5w - \frac{7}{3}]$ $\phantom{-}0$
7 $[7, 7, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + w - \frac{5}{3}]$ $\phantom{-}0$
9 $[9, 3, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 3w - \frac{5}{3}]$ $\phantom{-}2$
9 $[9, 3, w + 1]$ $\phantom{-}2$
17 $[17, 17, w + 3]$ $\phantom{-}6$
17 $[17, 17, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 3w - \frac{11}{3}]$ $\phantom{-}6$
31 $[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - w - \frac{1}{3}]$ $\phantom{-}0$
31 $[31, 31, -\frac{2}{3}w^{3} + \frac{2}{3}w^{2} + 5w - \frac{1}{3}]$ $\phantom{-}0$
41 $[41, 41, -\frac{2}{3}w^{3} + \frac{5}{3}w^{2} + 4w - \frac{19}{3}]$ $-6$
41 $[41, 41, w^{2} - 5]$ $-6$
41 $[41, 41, 2w + 3]$ $\phantom{-}6$
41 $[41, 41, \frac{2}{3}w^{3} + \frac{4}{3}w^{2} - 5w - \frac{29}{3}]$ $\phantom{-}6$
47 $[47, 47, -\frac{2}{3}w^{3} + \frac{5}{3}w^{2} + 3w - \frac{19}{3}]$ $\phantom{-}0$
47 $[47, 47, \frac{1}{3}w^{3} + \frac{2}{3}w^{2} - 3w - \frac{13}{3}]$ $\phantom{-}0$
49 $[49, 7, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 2w - \frac{11}{3}]$ $\phantom{-}14$
73 $[73, 73, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 5w + \frac{19}{3}]$ $-2$
73 $[73, 73, -\frac{2}{3}w^{3} - \frac{1}{3}w^{2} + 4w + \frac{11}{3}]$ $-2$
73 $[73, 73, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + 2w - \frac{17}{3}]$ $-2$
103 $[103, 103, -\frac{1}{3}w^{3} + \frac{4}{3}w^{2} + w - \frac{23}{3}]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is \((1)\).