# Properties

 Label 4.4.18625.1-16.2-d Base field 4.4.18625.1 Weight $[2, 2, 2, 2]$ Level norm $16$ Level $[16, 4, -\frac{1}{6}w^{3} + \frac{1}{3}w + \frac{5}{6}]$ Dimension $4$ CM no Base change no

# Related objects

• L-function not available

# Learn more about

## Base field 4.4.18625.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 14x^{2} + 9x + 41$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[16, 4, -\frac{1}{6}w^{3} + \frac{1}{3}w + \frac{5}{6}]$ Dimension: $4$ CM: no Base change: no Newspace dimension: $28$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{4} - 17x^{2} + 71$$
Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{6}w^{3} - \frac{7}{3}w - \frac{17}{6}]$ $\phantom{-}0$
4 $[4, 2, w - 3]$ $\phantom{-}e$
5 $[5, 5, -\frac{1}{6}w^{3} + w^{2} + \frac{1}{3}w - \frac{25}{6}]$ $-e$
9 $[9, 3, \frac{1}{6}w^{3} - \frac{7}{3}w + \frac{13}{6}]$ $-e^{3} + 9e$
9 $[9, 3, -w - 2]$ $\phantom{-}0$
11 $[11, 11, -\frac{1}{6}w^{3} + \frac{7}{3}w + \frac{11}{6}]$ $\phantom{-}2e^{2} - 17$
11 $[11, 11, -w + 2]$ $-2e^{2} + 14$
41 $[41, 41, -w]$ $-5$
41 $[41, 41, \frac{1}{6}w^{3} - \frac{7}{3}w + \frac{1}{6}]$ $\phantom{-}4e^{2} - 32$
59 $[59, 59, -\frac{1}{6}w^{3} + \frac{1}{3}w + \frac{23}{6}]$ $-2e$
59 $[59, 59, -\frac{1}{3}w^{3} + \frac{11}{3}w + \frac{11}{3}]$ $\phantom{-}3e^{3} - 26e$
61 $[61, 61, -\frac{5}{3}w^{3} - 3w^{2} + \frac{46}{3}w + \frac{79}{3}]$ $-6e^{2} + 55$
61 $[61, 61, \frac{5}{6}w^{3} + w^{2} - \frac{23}{3}w - \frac{55}{6}]$ $-2e^{2} + 17$
61 $[61, 61, w^{3} + 2w^{2} - 9w - 17]$ $\phantom{-}5e^{2} - 49$
61 $[61, 61, -\frac{1}{6}w^{3} + \frac{10}{3}w + \frac{35}{6}]$ $-e^{2}$
71 $[71, 71, -\frac{1}{2}w^{3} + 2w^{2} + 4w - \frac{33}{2}]$ $-7e^{2} + 56$
71 $[71, 71, \frac{1}{6}w^{3} - w^{2} - \frac{4}{3}w + \frac{67}{6}]$ $\phantom{-}7e^{2} - 63$
79 $[79, 79, \frac{1}{2}w^{3} - 3w + \frac{1}{2}]$ $\phantom{-}3e^{3} - 24e$
79 $[79, 79, -\frac{2}{3}w^{3} + \frac{19}{3}w - \frac{2}{3}]$ $-e^{3} + 10e$
89 $[89, 89, \frac{1}{2}w^{3} + w^{2} - 5w - \frac{15}{2}]$ $\phantom{-}4e^{3} - 36e$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, \frac{1}{6}w^{3} - \frac{7}{3}w - \frac{17}{6}]$ $-1$