Properties

Base field 4.4.18432.1
Weight [2, 2, 2, 2]
Level norm 9
Level $[9, 3, w - 3]$
Label 4.4.18432.1-9.1-d
Dimension 8
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.18432.1

Generator \(w\), with minimal polynomial \(x^{4} - 12x^{2} + 18\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[9, 3, w - 3]$
Label 4.4.18432.1-9.1-d
Dimension 8
Is CM no
Is base change no
Parent newspace dimension 18

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{8} \) \(\mathstrut +\mathstrut x^{7} \) \(\mathstrut -\mathstrut 33x^{6} \) \(\mathstrut +\mathstrut 8x^{5} \) \(\mathstrut +\mathstrut 305x^{4} \) \(\mathstrut -\mathstrut 353x^{3} \) \(\mathstrut -\mathstrut 373x^{2} \) \(\mathstrut +\mathstrut 354x \) \(\mathstrut +\mathstrut 211\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -\frac{1}{3}w^{3} - \frac{1}{3}w^{2} + 3w + 4]$ $-\frac{47}{4705}e^{7} - \frac{42}{941}e^{6} + \frac{1103}{4705}e^{5} + \frac{822}{941}e^{4} - \frac{1678}{941}e^{3} - \frac{19814}{4705}e^{2} + \frac{3998}{941}e + \frac{16911}{4705}$
7 $[7, 7, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 3w - 3]$ $\phantom{-}e$
7 $[7, 7, -\frac{1}{3}w^{2} + w + 1]$ $\phantom{-}\frac{103}{10351}e^{7} + \frac{359}{51755}e^{6} - \frac{13908}{51755}e^{5} + \frac{4187}{10351}e^{4} + \frac{17826}{10351}e^{3} - \frac{75304}{10351}e^{2} + \frac{225453}{51755}e + \frac{294969}{51755}$
7 $[7, 7, \frac{1}{3}w^{2} + w - 1]$ $-\frac{8}{10351}e^{7} + \frac{2384}{51755}e^{6} + \frac{5904}{51755}e^{5} - \frac{14897}{10351}e^{4} - \frac{12640}{10351}e^{3} + \frac{127046}{10351}e^{2} - \frac{222722}{51755}e - \frac{544882}{51755}$
7 $[7, 7, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + 3]$ $\phantom{-}\frac{42}{51755}e^{7} - \frac{433}{51755}e^{6} - \frac{4129}{51755}e^{5} + \frac{1668}{10351}e^{4} + \frac{13272}{10351}e^{3} - \frac{40756}{51755}e^{2} - \frac{274376}{51755}e + \frac{12137}{51755}$
9 $[9, 3, w - 3]$ $\phantom{-}1$
41 $[41, 41, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + 1]$ $\phantom{-}\frac{3183}{51755}e^{7} + \frac{4892}{51755}e^{6} - \frac{19849}{10351}e^{5} - \frac{5195}{10351}e^{4} + \frac{167397}{10351}e^{3} - \frac{700599}{51755}e^{2} - \frac{459981}{51755}e + \frac{64630}{10351}$
41 $[41, 41, -\frac{1}{3}w^{2} + w + 3]$ $-\frac{7321}{51755}e^{7} - \frac{14972}{51755}e^{6} + \frac{215236}{51755}e^{5} + \frac{28654}{10351}e^{4} - \frac{357097}{10351}e^{3} + \frac{950243}{51755}e^{2} + \frac{1391271}{51755}e - \frac{175768}{51755}$
41 $[41, 41, \frac{1}{3}w^{2} + w - 3]$ $-\frac{953}{51755}e^{7} - \frac{3237}{51755}e^{6} + \frac{28872}{51755}e^{5} + \frac{15386}{10351}e^{4} - \frac{52724}{10351}e^{3} - \frac{477541}{51755}e^{2} + \frac{698781}{51755}e + \frac{476039}{51755}$
41 $[41, 41, -\frac{1}{3}w^{3} - \frac{1}{3}w^{2} + 3w + 1]$ $\phantom{-}\frac{1472}{51755}e^{7} - \frac{2853}{51755}e^{6} - \frac{59932}{51755}e^{5} + \frac{24449}{10351}e^{4} + \frac{113218}{10351}e^{3} - \frac{1297781}{51755}e^{2} - \frac{90841}{51755}e + \frac{575216}{51755}$
47 $[47, 47, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 4w - 1]$ $-\frac{2072}{51755}e^{7} - \frac{2791}{51755}e^{6} + \frac{65684}{51755}e^{5} + \frac{520}{10351}e^{4} - \frac{116500}{10351}e^{3} + \frac{526986}{51755}e^{2} + \frac{548828}{51755}e - \frac{63957}{51755}$
47 $[47, 47, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 2w - 3]$ $\phantom{-}\frac{4338}{51755}e^{7} + \frac{8511}{51755}e^{6} - \frac{124809}{51755}e^{5} - \frac{11080}{10351}e^{4} + \frac{201145}{10351}e^{3} - \frac{941554}{51755}e^{2} - \frac{469793}{51755}e + \frac{599987}{51755}$
47 $[47, 47, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 2w - 3]$ $-\frac{4338}{51755}e^{7} - \frac{8511}{51755}e^{6} + \frac{124809}{51755}e^{5} + \frac{11080}{10351}e^{4} - \frac{201145}{10351}e^{3} + \frac{941554}{51755}e^{2} + \frac{469793}{51755}e - \frac{651742}{51755}$
47 $[47, 47, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 4w + 1]$ $\phantom{-}\frac{2072}{51755}e^{7} + \frac{2791}{51755}e^{6} - \frac{65684}{51755}e^{5} - \frac{520}{10351}e^{4} + \frac{116500}{10351}e^{3} - \frac{526986}{51755}e^{2} - \frac{548828}{51755}e + \frac{12202}{51755}$
89 $[89, 89, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 3w - 3]$ $\phantom{-}\frac{6416}{51755}e^{7} + \frac{3431}{10351}e^{6} - \frac{185168}{51755}e^{5} - \frac{51287}{10351}e^{4} + \frac{319541}{10351}e^{3} + \frac{263127}{51755}e^{2} - \frac{481281}{10351}e - \frac{675516}{51755}$
89 $[89, 89, \frac{2}{3}w^{2} + w - 5]$ $\phantom{-}\frac{1050}{10351}e^{7} + \frac{18332}{51755}e^{6} - \frac{133138}{51755}e^{5} - \frac{60626}{10351}e^{4} + \frac{199509}{10351}e^{3} + \frac{171465}{10351}e^{2} - \frac{1028886}{51755}e - \frac{1546771}{51755}$
89 $[89, 89, \frac{2}{3}w^{2} - w - 5]$ $-\frac{4068}{51755}e^{7} - \frac{3901}{51755}e^{6} + \frac{136712}{51755}e^{5} - \frac{4814}{10351}e^{4} - \frac{250388}{10351}e^{3} + \frac{1234069}{51755}e^{2} + \frac{1005348}{51755}e - \frac{570761}{51755}$
89 $[89, 89, \frac{1}{3}w^{3} + \frac{2}{3}w^{2} - 3w - 3]$ $-\frac{589}{10351}e^{7} - \frac{10796}{51755}e^{6} + \frac{72397}{51755}e^{5} + \frac{35349}{10351}e^{4} - \frac{102540}{10351}e^{3} - \frac{78587}{10351}e^{2} + \frac{450933}{51755}e - \frac{19751}{51755}$
97 $[97, 97, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 6w + 5]$ $\phantom{-}\frac{502}{4705}e^{7} + \frac{1322}{4705}e^{6} - \frac{13683}{4705}e^{5} - \frac{3454}{941}e^{4} + \frac{21246}{941}e^{3} - \frac{6101}{4705}e^{2} - \frac{77806}{4705}e - \frac{55591}{4705}$
97 $[97, 97, -w^{3} - \frac{5}{3}w^{2} + 10w + 15]$ $\phantom{-}\frac{1636}{51755}e^{7} + \frac{2443}{10351}e^{6} - \frac{28243}{51755}e^{5} - \frac{56282}{10351}e^{4} + \frac{40830}{10351}e^{3} + \frac{1801177}{51755}e^{2} - \frac{247920}{10351}e - \frac{1571311}{51755}$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
9 $[9, 3, w - 3]$ $-1$