# Properties

 Label 4.4.18432.1-14.1-b Base field 4.4.18432.1 Weight $[2, 2, 2, 2]$ Level norm $14$ Level $[14, 14, w + 2]$ Dimension $1$ CM no Base change no

# Related objects

## Base field 4.4.18432.1

Generator $$w$$, with minimal polynomial $$x^{4} - 12x^{2} + 18$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2]$ Level: $[14, 14, w + 2]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $18$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -\frac{1}{3}w^{3} - \frac{1}{3}w^{2} + 3w + 4]$ $-1$
7 $[7, 7, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 3w - 3]$ $\phantom{-}2$
7 $[7, 7, -\frac{1}{3}w^{2} + w + 1]$ $-1$
7 $[7, 7, \frac{1}{3}w^{2} + w - 1]$ $\phantom{-}0$
7 $[7, 7, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + 3]$ $\phantom{-}1$
9 $[9, 3, w - 3]$ $\phantom{-}4$
41 $[41, 41, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 3w + 1]$ $\phantom{-}4$
41 $[41, 41, -\frac{1}{3}w^{2} + w + 3]$ $\phantom{-}8$
41 $[41, 41, \frac{1}{3}w^{2} + w - 3]$ $\phantom{-}5$
41 $[41, 41, -\frac{1}{3}w^{3} - \frac{1}{3}w^{2} + 3w + 1]$ $-2$
47 $[47, 47, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 4w - 1]$ $-2$
47 $[47, 47, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + 2w - 3]$ $\phantom{-}0$
47 $[47, 47, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 2w - 3]$ $\phantom{-}9$
47 $[47, 47, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - 4w + 1]$ $\phantom{-}7$
89 $[89, 89, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 3w - 3]$ $\phantom{-}15$
89 $[89, 89, \frac{2}{3}w^{2} + w - 5]$ $\phantom{-}2$
89 $[89, 89, \frac{2}{3}w^{2} - w - 5]$ $-7$
89 $[89, 89, \frac{1}{3}w^{3} + \frac{2}{3}w^{2} - 3w - 3]$ $-12$
97 $[97, 97, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 6w + 5]$ $\phantom{-}12$
97 $[97, 97, -w^{3} - \frac{5}{3}w^{2} + 10w + 15]$ $\phantom{-}0$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -\frac{1}{3}w^{3} - \frac{1}{3}w^{2} + 3w + 4]$ $1$
$7$ $[7, 7, -\frac{1}{3}w^{2} + w + 1]$ $1$